湖北江瀚新材料股份有限公司 年产 2000 吨气凝胶复合材料产业化 建设项目

环境影响报告书

(报批前公示版)

湖北荆州环境保护科学技术有限公司 二〇二一年六月

目 录

栶	:述		1
	一、建	建设项目特点	1
	二、环	「境影响评价工作过程	1
	三、美	注的主要环境问题及环境影响	2
	四、环	境影响评价主要结论	3
1	总则		4
	1.1 编	制依据	4
	1.2 评	价目的及工作原则	8
	1.3 环	境影响识别及评价因子筛选	10
	1.4 评	价标准	12
	1.5 评	价工作等级和评价范围	16
	1.6 相	关规划及环境功能区划	20
	1.7 主	要环境保护目标	28
	1.8 评	价技术路线	28
2	现有工	程回顾	30
	2.1 公	司基本情况	30
	2.2 公	司项目组成情况	31
	2.3 公	司主要产品	39
	2.4 公	司公用工程	42
	2.5 现	有工程生产工艺流程及产污节点	43
	2.6 现	有工程环境保护措施	43
	2.7 现	有工程污染物排放及达标情况	46
	2.8 在	建工程情况	54
		建工程情况	
		公司污染物总量控制指标落实情况	
	2.11 存	存在的环境保护问题	57
3	建设项	目概况	59
		本情况	
		目组成	
		设地点	
		辅材料	
		要生产设备	
		品方案及产品质量标准	
		区平面布置	
		用工程	
		设项目与现有工程依托关系	
		运行时间与劳动定员	
	3.11 廷	建设周期	67

	3.12 总投资与环境保护投资	67
4	建设项目工程分析	68
	4.1 生产工艺及产排污节点分析	68
	4.2 公辅工程生产工艺及产、排情况	68
	4.3 相关平衡	69
	4.4 污染源源强	69
	4.5 环境影响减缓措施	84
	4.6 清洁生产分析	86
5	环境现状调查与评价	93
	5.1 自然环境现状	93
	5.2 区域环境质量现状调查与评价	97
	5.3 环境保护目标调查	120
	5.4 园区污染源调查	121
6	环境影响预测与评价	123
	6.1 营运期环境影响预测评价	123
	6.2 施工期环影响预测评价	
7	环境风险评价	186
	7.1 环境风险评价的目的和重点	186
	7.2 风险调查	186
	7.3 风险等级判定	187
	7.4 风险识别	188
	7.5 风险事故情形分析	190
	7.6 环境风险分析	195
	7.7 风险管理	
	7.8 环境风险简单分析汇总	
	7.9 风险评价结论	217
8	环境保护措施及其可行性论证	219
	8.1 营运期环境保护措施	219
	8.2 施工期环境保护措施	242
	8.3 环境保护投入估算	244
	8.4 项目竣工环境保护"三同时"验收清单	244
	8.5 项目环境可行性分析	248
9	环境影响经济损益分析	258
	9.1 经济效益分析	
	9.2 社会效益分析	
	9.3 环境损益分析	
	9.4 小结	261

10	环境管理与监测计划	262
	10.1 环境管理要求	262
	10.2 污染物排放管理要求	263
	10.3 环境管理制度	268
	10.4 环境监测计划	276
11	环境影响评价结论	279
	11.1 建设项目建设概况	279
	11.2 环境质量现状	279
	11.3 主要环境影响	280
	11.4 公众意见采纳情况	282
	11.5 环境保护措施及污染物排放情况	282
	11.6 环境影响经济损益分析	283
	11.7 环境管理与监测计划	284
	11.8 环境风险	284
	11.9 清洁生产	284
	11.10 主要污染物总量控制	284
	11.11 项目环境可行性	285
	11.12 环境影响结论	285

概述

一、建设项目特点

湖北江瀚新材料股份有限公司前身为荆州市江汉精细化工有限公司,是 1998 年改制组建的民营股份制企业,位于荆州市沙市化工园区内,公司现占地 500 亩,拥有总资产过 15 亿元,职工人数 720 余人,其中硕士 6 人,大专以上 学历的科技人员 220 人,拥有一支由 80 多名高、中级专业技术人员组成的研发 团队,现已开发出十二大系列 100 多个品种的硅烷偶联剂和硅烷交联剂产品,工厂建成多条工艺先进的自动化生产线。

从 2011 年起,公司先后被评定为湖北省企业技术中心、高新技术企业、湖北民营企业 100 强、湖北省科技型中小企业成长路线图计划重点培育企业、荆州市首届十佳创新型企业、荆州工业经济发展先进单位、"十二五"中国石油和化工优秀民营企业、中国精细化工企业 100 强等。

湖北江瀚新材料股份有限公司在公司现有厂区外的东北部新征用地 117440.3 平方米,新建生产车间 9 栋,仓库 2 栋,储罐区 3 座,装卸栈台 1 座, 以及配套的辅助设施和环保设施,同步进行年产 2000 吨高纯石英砂产业化建设 项目和年产 2000 吨气凝胶复合材料产业化建设项目。

年产 2000 吨气凝胶复合材料产业化建设项目总投资为 25000 万元,项目建成后可年产气凝胶复合材料 2000 吨。气凝胶复合材料是将纳米气凝胶与无机纤维结合在一起,专用于高温各类工业管道、罐体及其他弧面设备的保温隔热。是客户追求的隔热效果及能耗的理想选择。纳米气凝胶是目前已知的固体中导热系数低的物质。气凝胶毡复合有该纳米材料,是一种柔软、无机环保、易于施工的隔热材料,具有较高的经济附加值。该项目于 2021 年 3 月 10 日取得了《湖北省固定资产投资项目备案证》(登记备案项目代码:2103-421002-04-01-132577)。

二、环境影响评价工作过程

根据《中华人民共和国环境影响评价法》、《建设项目环境保护管理条例》及国家环境保护部《建设项目环境影响评价分类管理名录》等环保法律、法规

的有关规定,该项目属于十五、化学原料和化学制品制造业"36.基本化学原料制造"(除单纯混合和分装外的),本项目应编制环境影响报告书。2021年3月湖北江瀚新材料股份有限公司正式委托湖北荆州环境保护科学技术有限公司承担该项目环境影响评价工作。

我公司在接受委托后,认真组织实施了该项目的环境影响评价工作,组织有关技术人员收集、整理资料,对项目所在区域环境现状进行了调查,并对国内类似的企业生产和环境保护情况进行了调研,分析了该项目生产工艺方案、环境影响评价重点、评价范围和污染现状,对环境影响主要因子进行识别和筛选,对周围自然、社会环境进行调查,对工程分析和污染源参数进行核算,并进行大气、水和环境噪声影响预测及分析,优化了项目污染防治措施,在此基础上完成了《湖北江瀚新材料股份有限公司年产 2000 吨气凝胶复合材料产业化建设项目环境影响报告书》(送审本),提交给湖北江瀚新材料股份有限公司报荆州市生态环境局审查。

本报告书在编制过程中,得到了荆州市生态环境局沙市区分局以及建设单位湖北江瀚新材料股份有限公司等有关部门及单位的指导和大力支持,在此一并表示感谢!

三、关注的主要环境问题及环境影响

我公司在开展"湖北江瀚新材料股份有限公司年产 2000 吨气凝胶复合材料产业化建设项目"评价工作过程中主要关注以下问题:

- (1) 公司现有工程存在的主要环境问题。
- (2) 建设项目生产工艺与污染源源强核算。
- (3) 建设项目产生的主要环境影响分析及评价。
- (4) 建设项目污染物产排情况,拟采取的污染防治措施及论证性分析。
- (5) 建设项目环境风险预测评价与风险防范措施。
- (6) 项目的建设与国家、地方产业政策及规划的相符性。
- (7) 项目清洁生产水平分析、主要污染物排放总量控制。
- (8) 项目建设可行性分析。

四、环境影响评价主要结论

本评价对项目进行了工程分析、环境现状调查与评价、环境影响预测、环境风险分析、污染防治措施分析、总量控制分析、产业政策及规划符合性分析等工作。

通过分析结论如下:湖北江瀚新材料股份有限公司年产2000吨气凝胶复合材料产业化建设项目的建设将促进地区经济的发展。项目建设符合国家产业政策要求,符合城镇发展规划,满足资源综合利用和清洁生产政策的要求。本项目建设单位在认真落实本评价报告提出的各项环境污染防治措施后,投产后正常运行时,各项污染物能实现稳定达标排放,污染物排放不会改变周围环境功能类别。在加强监控、建立风险防范措施,并制定切实可行的应急预案的情况下,本项目的环境风险是可以接受的。

项目选址符合荆州市城市总体规划、荆州市沙市化工园区总体规划、土地利用规划、环境空气功能区划、水环境功能区划、声环境功能区划以及建设项目环境管理的要求。只要严格落实环境影响报告书提出的环保对策及措施,严格执行"三同时"制度,确保项目污染物达标排放,认真落实环境风险的防范措施及应急预案,从环保角度而言,项目在拟定地点按拟定规模建设,具有环境可行性。

1 总则

1.1 编制依据

1.1.1 法律法规、行政文件及技术规范

1.1.1.1 法律

- (1) 《中华人民共和国环境保护法》(2014年4月24日);
- (2)《中华人民共和国大气污染防治法》(2018年10月26日修订);
- (3)《中华人民共和国水污染防治法》(2017年6月27日修订);
- (4)《中华人民共和国固体废物污染环境防治法》(2020年4月29日修订);
 - (5)《中华人民共和国环境噪声污染防治法》(2018年12月29日修订);
 - (6) 《中华人民共和国水法》(2016年7月2日修订);
 - (7) 《中华人民共和国节约能源法》(2016年7月2日修订);
 - (8)《中华人民共和国环境影响评价法》(2018年12月29日修订);
 - (9)《中华人民共和国清洁生产促进法》(2012年7月1日修订);
 - (10)《中华人民共和国长江保护法》(2021年3月1日实施)。

1.1.1.2 行政法规

- (1)中华人民共和国国务院令第682号《建设项目环境保护管理条例》(2017年10月1日):
- (2)中华人民共和国国务院令第 344 号《危险化学品安全管理条例(修订)》 (国务院令第 591 号, 2011 年 3 月);
- (3) 国务院国发(2005) 40 号文《关于发布实施<促进产业结构调整暂行规定》的决定》(2005年12月2日);
- (4) 国务院国发〔2005〕39 号文《国务院关于落实科学发展观加强环境保护的决定》〔2005 年 12 月 3 日〕;
- (5) 国务院国发〔2006〕11 号《关于加快推进产能过剩行业结构调整的通知》(2006年3月12日);
- (6)《国务院关于加强环境保护重点工作的意见》(国发〔2011〕35 号, 2011年10月20日);

1.1.1.3 部门规章和行政文件

- (1) 国家发展改革委令 2019 年第 29 号《产业结构调整指导目录(2019 年版)》:
- (2) 生态环境部令(2020年11月30日)第16号《建设项目环境影响评价分类管理名录(2021年版)》:
- (3)国土资源部、国家发展改革委国土资发〔2012〕98号《关于发布实施《限制用地项目目录〔2012年本〕》和《禁止用地项目目录〔2012年本〕》的通知》;
- (4) 国土资发(2008) 24 号国土资源部关于发布和实施《工业项目建设用 地控制指标》的通知;
- (5)《关于进一步加强环境影响评价管理防范环境风险的通知》(环境保护部文件环发〔2012〕77号,2012年07月03日):
- (6)《关于进一步加强危险化学品安全生产工作的指导意见》(国务院安委会办公室安委办〔2008〕26号,2008年9月14日);
- (7)《关于开展重大危险源监督管理工作的指导意见》(安监管协调字 (2004) 56号,2004年4月27日);
- (8) 《关于深入推进重点企业清洁生产的通知》, (环发〔2010〕54号, 2010年4月12日);
- (9)关于印发《突发环境事件应急预案管理暂行办法》的通知(环发(2010) 113号):
- (10)《国务院关于印发"十三五"节能减排综合性工作方案的通知》(国发〔2016〕74号,2017年1月5日);
- (11)《关于切实加强风险防范严格环境影响评价管理的通知》(环发〔2012〕 98号,2012年8月8日);
- (12) 《国务院关于印发大气污染防治行动计划的通知》(国发〔2013〕 37号,2013年9月10日);
- (13) 国务院国发(2016)31号《国务院关于印发土壤污染防治行动计划的通知》(2016年5月31日):
 - (14)《关于进一步加强工业节水工作的意见》(工信部节(2010)218号,

2010年5月);

- (15)《建设项目环境影响评价政府信息公开指南(试行)》(环保部, 2014年1月1日);
- (16) 环发(2014) 197号《建设项目主要污染物排放总量指标审核及管理暂行办法》;
 - (17) 环大气 (2017) 121 号 ("十三五"挥发性有机物污染防治工作方案》;
 - (18) 工信部联节(2016) 217 号《重点行业挥发性有机物削减行动计划》:
- (19) 环土函〔2019〕25 号《关于印发地下水污染防治实施方案的通知》。 1.1.1.4 地方法规、规章
- (1) 鄂政办发〔2000〕10 号《省人民政府办公厅转发省环保局关于湖北省 地表水环境功能区划类别的通知》;
- (2) 鄂政函〔2003〕101号文《省人民政府关于同意湖北水功能区划的批复》;
- (3)湖北省人民政府办公厅《湖北省大气污染防治条例》,2018年11月19日修订,2019年6月1日实施:
- (4) 湖北省人民政府办公厅《湖北省水污染防治条例》,2018 年 11 月 19 日修订,自修订之日起施行
- (5) 湖北省人民政府办公厅《湖北省土壤污染防治条例》,2016年10月1日起施行:
- (6) 鄂政办发〔2019〕18号 《省人民政府办公厅关于调整建设项目环境 影响评价文件分级审批权限的通知》2019年02月21日发布;
- (7) 推动长江经济带发展领导小组办公室第89号《关于发布长江经济带发展负面清单指南(试行)的通知》,2019年1月12日。
- (8) 鄂环发〔2018〕8号《省环保厅、省发改委关于印发湖北省生态保护 红线划定方案的通知》,2018年7月26日;
- (9)省环保厅、省发改委、省财政厅、省交通运输厅、省质监局、省能源局等环发(2018)7号关于《印发<湖北省挥发性有机物污染防治三年行动实施方案>的通知》,2018年5月28日;
 - (10)湖北省人民政府令第364号《湖北省危险化学品安全管理办法》(2013

年8月26日省人民政府常务会议审议通过,自2013年11月1日起施行);

- (11) 鄂政办发(2016) 96 号《省人民政府办公厅关于印发湖北省主要污染物排污权有偿使用和交易办法的通知》;
- (12) 鄂环办发〔2014〕58 号《关于印发<湖北省大气污染防治行动计划实施情况考核办法(试行)>的通知》:
- (13) 鄂环委办〔2016〕79 号《省环委会办公室关于印发湖北重点行业挥发性有机物污染整治实施方案的通知》:
- (14) 荆政发〔2014〕21 号《关于印发荆州市大气污染防治行动计划的通知》,2014年11月17日发布;
- (15) 荆政办电[2016]17 号《荆州市沿江重化工及造纸行业企业专项集中整治工作措施》:
- (16) 荆政发〔2016〕12 号《荆州市水污染防治行动计划工作方案》。 1.1.1.5 技术规范
 - (1) 《建设项目环境影响评价技术导则-总纲》(HJ2.1-2016);
 - (2) 《环境影响评价技术导则-大气环境》(HJ2.2-2018);
 - (3) 《环境影响评价技术导则-地表水环境》(HJ2.3-2018);
 - (4) 《环境影响评价技术导则-地下水环境》(HJ610-2016);
 - (5) 《环境影响评价技术导则-声环境》(HJ2.4-2009);
 - (6) 《建设项目环境风险评价技术导则》(HJ169-2018);
 - (7) 《环境影响评价技术导则-土壤环境(试行)》(HJ694-2018);
 - (8) 《建设项目环境影响技术评估导则》(HJ616-2011);
 - (9) 《水污染治理工程技术导则》(HJ2015-2012);
 - (10) 《大气污染治理工程技术导则》(HJ2000-2010);
 - (11) 《排污单位自行监测技术指南 总则》(HJ 819-2017);
 - (12) 《制定地方大气污大染物排放标准的技术方法》(GB/T3840-91);
 - (13) 《常用危险化学品储存通则》(GB15603-1995);
 - (14) 《危险化学品事故灾难应急预案》(国家安全生产监督管理总局);
- (15)《固体废物鉴别导则(试行)》(原国家环保总局公告 2006 年 11 号);

- (16) 《危险废物收集 贮存 运输技术规范》(HJ2025-2012);
- (17) 《危险化学品重大危险源辨识》(GB18218-2018);
- (18) 《危险废物鉴别标准 通则》(GB 5085.7-2019);
- (19) 《建筑设计防火规范》(GB50016-2014)(2018年版);
- (20) 《建设项目危险废物环境影响评价指南》(公告 2017 年第 43 号);
- (21) 《危险废物污染防治技术政策》(环发【2001】199号)。

1.1.1.6 规划文件

- (1) 《全国生态保护"十三五"规划纲要》;
- (2) 《"十三五"生态环境保护规划》:
- (3) 《湖北省环境保护"十三五"规划》;
- (4) 《荆州市环境保护"十三五"规划》;
- (5) 《荆州市沙市化工园区总体规划》。

1.1.2 评价委托书

《湖北江瀚新材料股份有限公司年产2000吨气凝胶复合材料产业化建设项目环境影响评价委托书》,见附件。

1.1.3 项目有关资料

湖北江瀚新材料股份有限公司提供的其它相关资料。

1.2 评价目的及工作原则

1.2.1 评价目的

为了正确处理项目所在地区的经济、社会发展和环境保护,维护生态平衡的关系,做到瞻前顾后,统筹兼顾,维护和创造良好的生产与生活环境,使该项目的建设达到经济效益、社会效益和环境效益的统一,我单位按照国家建设项目影响评价技术相关导则的规定开展本次环境影响评价工作,力求达到下述目的:

- (1)通过项目地区的环境现状调查及监测,掌握所在区域环境质量现状,确定区域主要污染源及主要环境问题;确定环境容量及满足环境容量相应对策和措施;
 - (2) 分析本工程所采用的生产工艺和设备是否属于清洁生产工艺; 分析工

程设计采用污染治理措施的合理性、可行性和可靠性,经治理后各污染物是否能满足稳定达标排放的要求,以最大限度减少工程对环境的不利影响;对分析中发现的问题提出改进措施和要求;

- (3)根据行业技术政策和国家环境保护最佳实用技术水平,分析项目污染 治理措施和清洁生产工艺,提出切实可行的污染防治对策和措施;
- (4)针对工程的特点,采用类比调研、资料分析及现场调查相结合的手段 收集资料,在保证环境影响报告书质量的前提下,充分利用现有资料和成果, 以节省时间、缩短评价周期,预测分析本工程建成后环境影响范围和程度;
- (5)按照国家、省、市环保行政主管部门关于"总量控制"的要求,提出切实可行的污染防治工艺,并按区域环境质量达标和污染物达标排放的要求,提出相应的污染防治措施与建议,对工程建设的可行性从环保角度作出结论,为项目审批部门的决策、设计部门的设计、建设单位工程项目的实施及项目的环境管理提供依据。

1.2.2 工作原则

突出环境影响评价的源头预防作用,坚持保护和改善环境质量。

(1) 依法评价

贯彻执行我国环境保护相关法律法规、标准、政策和规划等,优化项目建设,服务环境管理。

(2) 科学评价

规范环境影响评价方法,科学分析项目建设对环境质量的影响。

(3) 突出重点

根据建设项目的工程内容及其特点,明确与环境要素间的作用效应关系,根据规划环境影响评价结论和审查意见,充分利用符合时效的数据资料及成果,对建设项目主要环境影响予以重点分析和评价。

综上,针对项目的特点,采用物料衡算及现场测试相结合的手段收集资料, 在保证环境影响报告书质量的前提下,充分利用现有资料和成果,以节省时间、 缩短评价周期。实事求是分析该项目可能对环境造成的影响,结合城市发展总 体规划和环境规划的要求,按照国家清洁生产、资源综合利用和循环经济的要 求、提出切实可行的"清洁生产"工艺;并按区域环境质量达标、项目污染物 排放总量达标、污染物排放浓度达标和防范环境风险的要求,提出相应的污染 防治措施、环境风险预防措施、环境突发事件应急预案与建议,对项目建设的 可行性从环保角度做出结论,为项目审批部门的决策、设计部门的设计、建设 单位项目的实施及环境管理提供科学依据。

1.3 环境影响识别及评价因子筛选

1.3.1 环境影响识别

利用矩阵识别法对本项目建设期和运营期产生的环境影响因素进行识别, 具体见表 1-1。

评				影响	特征			
价时段		评价因子	性质	程度	时间	可能性	影响说明	减免防治措施
	自	大气环境	-	2	短	小	施工二次扬尘	对道路场地洒 水
施	然	地表水环境	-	3	短	小	施工生活污水	沉淀、格栅
	环境	环境噪声	-	3	短	小	建筑机械噪声	加强管理
工	児	固体废物	-	3	短	小	建筑垃圾	加强管理
期	生态	陆生植物	-	3	短	小	施工粉尘附着植物叶 面	对道路、场地 洒水
	环境	水生植物	-	3	短	小	生活污水	治理
	<u></u>	大气环境	-	2	长	大	VOCs、HCl	治理
	自然	地表水环境	-	3	长	大	生产废水、生活废水	治理
营	环	固废	-	3	长	小	生产固废、生活垃圾	分类处理处置
运	境	环境噪声	-	3	长	小	设备噪声	合理布局、降 噪措施
11477	生	陆上植物	-	3	长	小	VOCs、HCl	治理
期	态环境	水生生物	-	3	长	小	生产废水、生活废水	分类治理

表 1-1 建设项目环境影响识别矩阵一览表

注: (1) 影响性质 "+" 为有利影响; "-" 为不利影响;

(2) 影响程度"1"为重大影响;"2"为中等影响;"3"为轻微影响。

1.3.2 环境影响评价因子的筛选

根据上表列出的本工程环境影响识别矩阵,经综合分析,筛选出主要环境

影响评价因子列于表 1-2。

表 1-2 主要环境影响评价因子一览表

环境		评价因子	
要素	现状评价	施工期评价	营运期评价
地表水	水温、pH、化学需氧量、五日生 化需氧量、氨氮、总磷、溶解氧	pH、COD、BOD5、 SS、NH3-N	COD、BOD5、SS、NH3-N
地下水	pH、总硬度、高锰酸盐指数、溶解性总固体、挥发酚、氨氮、硝酸盐氮、亚硝酸盐氮、氯化物、氟化物、氰化物、六价铬、铁、砷、汞、总大肠菌群	/	耗氧量
大气	SO ₂ 、NO ₂ 、PM ₁₀ 、NH ₃ 、H ₂ S、 HCl、氟化物	PM_{10}	VOCs、HCl
噪声	昼夜间等效声级	昼夜间等效声级	昼夜间等效声级
土壤	砷、镉、铬(六价)、铜、铅、汞、镍、四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、对/间-二甲苯、邻-二甲苯、硝基苯、苯胺、2-氯酚、苯并(a) 蒽、苯并(a) 克、苯并(b) 荧蒽、苯并(a) 克、苯并(b) 荧蒽、苯并(b) 荧蒽、苯并(b) 荧克、苯并(b) 克克、克克、克克、克克、克克、克克、克克、克克、克克、克克、克克、克克、克克、	/	рН
固体 废物	/	施工垃圾	一般工业固废、危险废物

1.3.3 评价时段

该项目分为建设过程和生产运行两个阶段。建设过程的环境影响属短时、 局部和部分可逆性的影响,影响可随建设期的完成而基本消失;运行期的环境 影响属长期、局部和不可逆性影响,并随着排污量的增加对环境影响也将进一 步加深,从环保管理控制上必须满足污染物达标排放和总量控制,确保满足区 域环境质量的功能要求。 因此,评价重点关注运行期的环境影响,同时对建设期做简要分析。

1.4 评价标准

1.4.1 环境质量标准

(1) 空气环境质量标准见表 1-3。

表 1-3 环境空气质量标准限值一览表

类	标准号及名称	评价 类(级)别		标准限值			
别	你任与汉石你	对象	矢(纵 <i>)</i> 刑 	名称	取值时间	限值	
				SO_2	24 小时平均	$150\mu g/m^3$	
	《环境空气质量			302	1 小时平均	$500 \mu g/m^3$	
环	标准》	다 네	=	PM_{10}	24 小时平均	$150\mu g/m^3$	
境	(GB3095-2012)	区域 环境		NO_2	24 小时平均	$80\mu g/m^3$	
空		空气		NO ₂	1 小时平均值	$200 \mu g/m^3$	
气	《环境影响评价	<u> </u>	附录 D	氯化氢	1 小时平均	$50\mu g/m^3$	
	技术导则-大气环		M	就化全	日平均	$15\mu g/m^3$	
	境》(HJ2.2-2018)		1% D.1	TVOC	8 小时平均	$600 \mu g/m^3$	

(2) 地表水环境质量标准见表 1-4。

表 1-4 地表水环境质量限值一览表

类别	标准号及名称	评价对象	米(佐)見	标准	限值
光 剂	你任与汉石你	竹川州家	类(级)别	名称	限值(mg/m³)
				рН	6-9
				COD	≤20mg/L
				BOD_5	≤4mg/L
地表	《地表水环境质量			氨氮	≤1.0mg/L
水环	标准》	长江(荆州城区 段)	III	总磷	≤0.2mg/L
境	(GB3838-2002)	(X)		总砷	≤0.05mg/L
				溶解氧	≥5mg/L
				总铅	≤0.05mg/L
				氟化物	≤1.0mg/L

(3) 区域声环境质量标准见表 1-5。

表 1-5 区域声环境质量限值一览表

		评价对象	米(加)	标准限值		
类别	标准号及名称		类(级) 别	名称	限值。	dB(A)
			נינל	石 柳	昼间	夜间
声环境	《声环境质量标准》	厂界	3	等效声级	65	55

(GB3096-2008)		Leg(A)	
		1()	

(4)区域地下水环境质量执行《地下水质量标准》(GB/T14848-2017)表 1Ⅲ类限值,具体限值见表 1-6。

表 1-6 区域地下水环境质量限值一览表

序号	项目	III类限值	序号	项目	III类限值
1	рН	6.5~8.5	9	汞	≤0.001mg/L
2	耗氧量	≤3.0mg/L	10	铁	≤0.3mg/L
3	氨氮	≤0.5mg/L	11	铅	≤0.01mg/L
4	As	≤0.01mg/L	12	总硬度	≤450mg/L
5	氟化物	≤1.0 mg/L	13	硝酸盐	≤20
6	镉	≤0.005mg/L	14	亚硝酸盐	≤1.0mg/L
7	砷	≤0.01mg/L	15	挥发酚	≤0.002
8	铬(六价)	≤0.05mg/L	16	硫酸盐	≤250

(5) 区域土壤环境质量执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表1第二类用地限值,具体限值见表1-7。

表 1-7 区域土壤环境质量限值一览表

×	沙九. 4 /m で云. ロ	第二多		评价
污染物项目		筛选值	管控值	对象
	砷	60	140	
	镉	65	172	
	铬 (六价)	5.7	78	
重金属和无机物	铜	18000	36000	
	铅	800	2500	
	汞	38	82	
	镍	900	2000	
	四氯化碳	2.8	36	土壤
	氯仿	0.9	10	
	氯甲烷	37	120	环境
	1,1-二氯乙烷	9	100	
	1,2-二氯乙烷	5	21	
挥发性有机物	1,1-二氯乙烯	66	200	
	顺-1,2-二氯乙烯	596	2000	
	反-1,2-二氯乙烯	54	163	
	二氯甲烷	616	2000	
	1,2-二氯丙烷	5	47	
	1, 1, 1, 2-四氯乙烷	10	100	

	1, 1, 2, 2-四氯乙烷	6.8	50
	四氯乙烯	53	183
	1,1,1-三氯乙烷	840	840
	1, 1, 2-三氯乙烷	2.8	15
	三氯乙烯	2.8	20
	1, 2, 3-三氯丙烷	0.5	5
	氯乙烯	0.43	4.3
	苯	4	40
	氯苯	270	1000
	1, 2-二氯苯	560	560
	1,4-二氯苯	20	200
	乙苯	28	280
	苯乙烯	1290	1290
	甲苯	1200	1200
	间二甲苯+对二甲苯	500	570
	邻二甲苯	640	640
	硝基苯	76	760
	苯胺	260	663
	2-氯酚	2256	4500
	苯并〔a〕蒽	15	151
	苯并〔a〕芘	1.5	15
半挥发性有机物	苯并(b)荧蒽	15	151
	苯并(k)荧蒽	151	1500
	崫	1293	12900
	二苯并〔a, h〕蒽	1.5	15
	茚并〔1, 2, 3-cd〕芘	15	151
	萘	70	700

1.4.2 排放标准

(1) 废气排放标准详见表 1-8。

表 1-8 废气排放标准限值一览表

类别	标准号及名称	评价 对象	类(级)别	控制指标	
废气	《大气污染物综合 排放标准》 (GB16297-1996)	工艺废气	表 2 新污染源大气污染物排放限值	HCl	最高允许排放浓度 100mg/m³ 20m 排气筒最高允许排放速率 0.43kg/h 周界外浓度最高点 0.20mg/m³
	《工业企业挥发性	工艺废气	表 1 石油炼制	TRVOC	最高允许排放浓度 80mg/m³

有机物排放控制标		与石油化学		20m 排气筒最高允许排放速率
准》(DB12/				
524-2020)				3.8kg/h
《挥发性有机物无			NMHC	监控点处1小时平均浓度值
组织排放控制标准》	无组织	表 A.1 特别排	NIVINC	6mg/m^3
组织排放空前标准》 (GB37822-2019)	儿组织	放限值	NMHC	监控点处任意一次浓度值
(GB3/822-2019)				20mg/m^3

(2) 废水排放标准详见表 1-9。

表 1-9 废水排放标准限值一览表

类别	标准号及名称	评价 对象	类(级)别		控制指标
				污染物名称	最高允许排放浓度(mg/L)
				рН	6~9
	《污水综合排放标准》		表4三级排	COD	500
	GB8978-1996		放限值	BOD ₅	300
		综合废水		NH ₃ -N	/
				SS	400
			进水水质	рН	6~9
废	荆州申联环境科技有			COD	500
水	限公司污水处理厂接 管协议			BOD_5	300
				NH ₃ -N	50
				SS	400
				рН	6~9
				COD	500
	本项目执行排放标准		执行标准	BOD ₅	300
				NH ₃ -N	50
				SS	400

(3) 项目噪声排放标准见表 1-10。

表 1-10 噪声排放标准限值一览表

				标准限值		
类别	标准号及名称	评价对象	类(级)别	なまた	限值 dB(A)	
				名 称	昼间	夜间
施工期噪声	《建筑施工场界环境噪声 排放标准》(GB 12523-2011)	施工场界	/	等效声级 Leq(A)	70	55
营运期 噪声	《工业企业厂界环境噪声 排放标准》(GB 12348-2008)	厂界四周	3	等效声级 Leq(A)	65	55

1.4.3 其他

固体废物:按其性质不同拟分别执行不同标准:一般工业固体废物执行《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2020)及其修改单; 危险废物执行《危险废物贮存污染控制标准》(GB18597-2001)及其修改单。

1.5 评价工作等级和评价范围

1.5.1 大气环境影响评价等级确定

按照 HJ2.2-2018《环境影响评价技术导则 大气环境》,项目大气环境影响评价工作等级判断如下:根据项目污染源初步调查结果,分别计算项目排放主要污染物的最大地面空气质量浓度占标率 Pi (第 i 个污染物,简称"最大浓度占标率"),及第 i 个污染物的地面空气质量浓度达到标准值的 10%时所对应的最远距离 $D_{10\%}$ 。其中 Pi 定义为:

$$P_i = \frac{C_i}{C_{oi}} \cdot 100\%$$

式中: Pi—第 i 个污染物的最大地面浓度占标率, %:

Ci—采用估算模型计算出第i个污染物的最大1h地面空气质量浓度, $\mu g/m^3$;

Coi 一第 i 个污染物的环境空气质量浓度标准, µg/m³。

评价工作等级按表 1.5-1 的分级判据进行划分。最大地面浓度占标率 Pi 按公式(1)计算,如污染物数 i 大于 1,取 P 值中最大者 (Pmax),和其对应的 D_{10%}。项目大气环境影响评价等级划分依据 (HJ/T2.2-2018 表 2)见表 1-11。

评价工作等级
 一级
 正级
 正级
 上级
 Pmax≥10%
 Pmax<10%
 Pmax<1%

表 1-11 大气环境影响评价等级判定依据

根据导则规定,项目污染物数大于 1,取 P 值中最大的(Pmax)和其对应的 D10%作为等级划分依据,根据估算模型计算结果,本项目 P 值中最大占标率为 4.43%(计算详见 6.1.12 节)。对照《环境影响评价技术导则-气环境》(HJ2.2-2018)评价等级的划分原则,对电力、钢铁、水泥、石化、化工、平板

玻璃、有色等高耗能行业的多源项目或以使用高污染燃料为主的多源项目,并且编制环境影响报告书的项目评价等级提高一级,确定本项目大气环境影响评价等级为一级。

1.5.2 地表水环境影响评价等级确定

项目建成后,外排废水经过有效治理后达标排放,进入荆州申联环境科技有限公司污水处理厂,经荆州申联环境科技有限公司污水处理厂处理后排放,为间接排放。根据《环境影响评价技术导则 地面水》(HJ2.3-2018)要求,本项目地表水环境影响评价等级为三级 B。地表水环境影响评价等级划分依据见表 1-12。

	判定依据				
) == 11 total ==					
评价等级	排放方式	废水排放量 Q / (m³/d);			
		水污染物当量数 W/(无量纲)			
一级	直接排放	Q≥20000 或 W≥600000			
二级	直接排放	其它			
三级 A	直接排放	Q<200 且 W<6000			
三级 B	间接排放	_			

表 1-12 地表水环境影响评价等级判据表

1.5.3 声环境影响评价等级确定

该项目厂址地处工业区,声环境功能总体划分为 3 类功能区; 预计建成后营运期声环境评价范围内没有声环境保护目标; 建设项目前后评价范围内敏感目标噪声级增高量在 3dB(A)以下。根据《环境影响评价技术导则 声环境》(HJ2.4-2009),该项目声环境影响评价等级为**三级。**

声环境影响评价等级划分依据见表 1-13。

因素	项目参数	一级	二级	三级	级别
环境功能区划	3 类	0 类	1、2 类	3、4类	
敏感目标	无	有	无	无	— 4π.
噪声增量	小于 3dB (A)	大于 5dB (A)	3~5dB (A)	小于 3dB (A)	三级
受影响人口数量	变化不大	显著增加	增加较多	变化不大	

表 1-13 声环境评价等级判定依据

1.5.4 地下水环境影响评价等级确定

(1) 建设项目类别

根据《环境影响评价技术导则 地下水》(HJ610-2016),该项目为"基本化学原料制造"项目,属于附录A中的 I 类建设项目。

(2) 建设项目场地的地下水环境敏感程度

项目建设项目所在区域地下水环境功能规划为III类,该项目周边没有取用地下水的居民,没有特殊要求保护的资源,没有集中式饮用水水源地保护区。因此该项目地下水环境敏感程度判定为"不敏感"。

(3) 建设项目地下水评价工作等级判定

综上,根据 HJ610-2016,该项目地下水环境影响评价工作等级为**二级**。 地下水环境影响评价等级分级表见表 1-14。

项目类别 环境敏感程度	I 类项目	II类项目	Ⅲ类项目
敏感	_	_	1
较敏感	_		11
不敏感		三	=

表 1-14 地下水环境评价等级分级表

1.5.5 环境风险影响评价等级确定

根据《建设项目环境风险评价技术导则》(HJ/T169-2018),环境风险评价工作等级划分为一级、二级、三级。根据建设项目涉及的物质及工艺系统危险性和所在地的环境敏感性确定环境风险潜势,按照下表确定评价工作等级。风险潜势为IV及以上,进行一级评价;风险潜势为III,进行二级评价;风险潜势为III,进行三级评价;风险潜势为III,进行三级评价;风险潜势为III,进行三级评价;风险潜势为III,进行三级评价;风险潜势为III,进行三级评价;风险潜势为III,进行三级评价;风险潜势为III,进行三级评价;风险潜势为III,进行三级评价;风险潜势为III,进行三级评价;风险潜势为III,进行三级评价;风险潜势为III,可开展简单分析。

风险评价等级分级表见表 1-15。

表 1-15 风险评价工作等级划分表

环境风险潜势	$IV \cdot IV^+$	III	II	I		
评价工作等级	评价工作等级 一 二		三	简单分析 a		
a 是相对于详细	评价工作内容而	言,在描述危险物质	质、环境影响途径、	环境危害后果、风		
险防范措施等方面给出定性的说明。见附录 A。						

本项目原料、产品、副产物均未列入附录 B 重点关注的危险物质,因此本项目 Q<1,可直接判定本项目环境风险潜势为 I。对比上表,本项目环境风险评价工作等级为简单分析。

1.5.6 土壤环境影响评价等级

根据《环境影响评价技术导则 土壤环境》(HJ 964-2018),本项目为化工项目,属于污染影响型,属于 I 类。本项目占地 117440.3m²,主要为永久占地,属于中型;项目所在地土壤及周边土壤均为工业园用地,周边不存在耕地、园地、牧草地、饮用水水源地或居民区、学校、医院、疗养院、养老院等土壤环境敏感目标的及其他土壤环境敏感目标的,项目所在区域土壤属于"其他情况",土壤环境敏感程度判定为"不敏感"。最终确定本项目土壤环境影响评价等级为二级。

评价工作等 级 度		I类			II类			III类	
	大	中	小	大	中	小	大	中	小
敏感	一级	一级	一级	二级	二级	二级	三级	三级	三级
较敏感	一级	一级	二级	二级	二级	三级	三级	三级	-
不敏感	一级	二级	二级	二级	三级	三级	三级	-	-
注:	注: "-"表示可不开展土壤环境影响评价工作。								

表 1-16 污染影响型评价工作等级划分表

1.5.7 生态环境影响评价等级

该项目工程用地面积约为 117440.3 平方米,远小于 2km²,且用地位于荆州市沙市化工园,依据《环境影响评价技术导则生态影响》(HJ19-2011)中 4.2.1 规定,确定该项目生态影响评价工作等级为**三级**。

	工程占地(水域)范围					
影响区域生态敏感性	面积≥20km²	面积 2km²~20km²	面积≤2km²			
	或长度≥100km	或长度 50km~100km	或长度≤50km			
特殊生态敏感区	一级	一级	一级			
重要生态敏感区	一级	二级	三级			
一般区域	二级	三级	三级			

表 1-17 生态影响评价工作等级划分表

1.5.8 评价范围

(1) 工程分析范围

工程分析范围为拟建工程的工艺装置及与之配套的公用工程、辅助生产装置"三废"产生工序和排放情况分析,包括污染物正常排放和非正常排放两种

情况。

(2) 大气环境影响评价范围

大气环境评价范围为以项目厂址为中心,边长 5km 的矩形范围。

大气环境调查范围与大气环境影响评价范围相同。

(3) 地表水评价范围

说明所排放的污染物类型和数量、给排水状况、排水去向、依托污水处理设施环境可行性。

(4) 环境噪声影响评价范围

环境噪声评价范围为项目厂界向外拓展 200m 的范围。

(5) 地下水评价范围

地下水评价范围为以该项目为中心, 6km²的范围。

(6) 风险评价范围

大气风险评价范围为以该项目风险源为中心,距离中心 5km 内的圆形区域。 地下水风险评价范围与地下水环境影响评价范围相同。

地表水风险评价范围与地表水环境影响评价范围相同。

(7) 土壤评价范围

土壤评价范围为项目厂界向外拓展 200m 的范围。

(8) 生态环境评价范围

生态环境评价范围为项目用地范围及向外延伸 1km 的范围内。

1.6 相关规划及环境功能区划

1.6.1 荆州市沙市化工园区规划概述

1.6.1.1 化工园规划目标

依托该园区所处位置,有便利的交通条件,以城市总体规划为依据,积极 深化园区土地利用效益,提升土地价值,改善人居环境质量,完善城镇交通系 统,加强设施配套,建设成为节约集约利用土地,重点打造以工业为主的化工 园区。

1.6.1.2 规划范围

沙市化工园位于锣场镇区渔湖单元北部,化工园规划范围东起深圳大道、

中心渠,西至锣场路,南至创业大道、东家庄路,北至宜黄高速,交通便利,规划总用地面积为51.43ha。

1.6.1.3 化工园基础设施规划

给水工程

- (1) 给水量预测: 最高日用水量约 0.33 万吨/日。
- (2)室外消防:同一时间内火灾次数一次,一次灭火用水量为 20L/S (若其他地块及设施等室外消防用水量大于 20L/S 时须取大值);园区内给水管作为消防水源,园区内沟渠水作为消防补充水源。沿道路布设消火栓,间距不大于 120 米。
- (3)管网布置:给水管网成环网布置,给水干管沿区内干道布置,管径在DN200-DN600,管网末稍压力应不小于 0.28MPa。

污水工程

- (1) 污水量预测: 污水量按总用水量的 80%计,最高日污水量约 2.02 万吨/日(其中最高日工业污水 1.845 万吨/日,日变化系数取 1.3,日平均量为 1.42 万吨/日)。
- (2) 污水分区:工业污水由管道收集排入位于豉湖北路与上海大道西北角的工业污水提升泵站(已建成)→进入市开发区工业污水处理厂。
- (3)污水排放标准:生活污水经化粪池等处理设施处理后排入城市污水管网,企业的工业废水自行处理,工业废水处理后排入城市污水系统的水质须符合《污水排入城市下水道水质标准》(CJ3082-1999)的要求,处理后的污水应符合《城市污水处理厂污水污泥排放标准》(CJ3025-93)的要求。

雨水规划

- (1) 规划指标及参数: 暴雨强度公式: q=684.7(1+0.854lgp)/t0.526, 重现期 P=2 年, 地面迳流系数 0.6, t=t1+t2。
 - (2) 本次规划方案提出园区内雨水通过管沟收集就近排入现状排渠。
- (3)规划调蓄水体:保留深圳大道以东、上海大道以西、豉湖渠北侧的大片鱼塘作为调蓄水体,须加以保护;结合绿化设计形成区域内的生态景观区。充分利用现有的农田排渠及水利排灌泵站,提高区域内的防洪排涝能力及周边乡村农田的排灌能力。

燃气工程

- (1) 气源规划: 近远期均为天然气。
- (2)输配管网规划:园区内采用中压一级系统环状供气。中压管网设计压力 0.4Mpa,用气不均:匀系数取 K 月=1.2,K 日=1.15,K 时=3.0,远期气化率 100%;运行压力 0.3Mpa。因该园区内以工业用地为主无居住用地,目前阶段尚无法进行用气量预测。

燃气管网配置是按《荆州市荆州市锣场镇总体规划》(2013-2030)(修改)的燃气工程规划执行的。

电力工程规划

(1) 用电负荷预测:

采用负荷密度法对锣场渔湖园区用电负荷进行预测,各地块根据用地性质、 负荷特征,并结合荆州市同类建设用地用电水平采用以下负荷指标:

工业用地用电: 250KW/公顷

道路与交通设施用地用电: 20KW/公顷

同时系数06

本园区总计算负荷约为 6750KW。

(2) 变电站规划:

化工园区由现状 35KV 锣场变供电,随着本园区和相邻区域的开发建设,用电负荷的不断增长,规划将新建 110KV 锣场变电站,锣场变容量为三台 50MVA 有载调压变压器。

(3) 110KV 线网规划:

110KV 锣场变由 220KV 关沮变至锣场变二回 110KV 线路供电,110KV 群力金属专变由 220KV 楚都变出二回 110KV 线路供电。

(4) 10KV 网络规划:

渔湖园区 10KV 网络规划:

- ①由锣场变出四回 10KV 线路沿南北渠路东西两侧向北敷设至创业大道, 然后沿创业大道南侧分别向南敷设至岑观公路,向北敷设至八支渠路。
- ②由锣场变出四回 10KV 线路沿渔湖大道南侧分别向东敷设至岑观公路, 向西敷设至八支渠路。

③由锣场变出两回 10KV 线路沿南北渠路东侧向南敷设至豉湖北路,沿豉湖北路北侧分别向东敷设至岑观公路,向西敷设至八支渠路。

(5) 380V/220V 网络:

本园区内 380/220V 低压配电线路以变电台区或箱变为园区采用放射式配电方式,低压供电半径不超过 250 米。

(6) 线路敷设方式:

楚都变至群力金属专变 110KV 线路沿盘湖渠东侧高压走廊架空敷设; 220KV 关沮变至锣场变 110KV 线路沿豉湖渠北侧、南北渠西侧高压走廊架空敷设。本园区内 10KV 线路规划采用电缆沿道路侧埋地敷设。

"五线"控制

园区建立红线控制体系,由于该园区内无其它控制用地,在划定"红线"的基础上划定适建与不适建的用地界限,并制定相关控制导则。

(1) 红线的划定

红线是指规划中用于界定园区内城镇主、次干路、居住区级道路及广场用 地和交通设施用地的控制线。红线导控的核心是控制道路用地范围,限定各类 道路沿线建(构)筑物的建设条件。

(2) 道路红线导控要点

严格控制道路用地红线,红线内土地不得进行任何与道路功能不相符合的使用。特殊道路的断面形式,可按城市规划要求另行确定。道路红线两侧建(构)筑物应根据相应规划管理要求由规划道路红线两侧分别向外退缩,退缩范围内属绿地,不得建设永久性或临时性建(构)筑物。

主干路红线宽 40 米,次干路红线宽 20-30 米。新建城镇道路实行统一的城镇道路断面、建筑退让道路距离,保障城镇道路建设的标准化和规范化。

1.6.1.4 产业发展规划

(1) 产业总体发展思路

以提质增效为中心,以增强整体实力为目标,着力提高市场竞争能力,大力发展以有机硅为主的化工新材料、新领域精细化工材料,优化产业结构。提升产业规模和效益水平,巩固并提高支柱产业地位。加强化工产业与信息化的融合,提升产业档次。加快并规范化工园区建设,优化产业布局。坚持以科学

发展观为指导,全面贯彻落实国家和省、市有关战略新兴产业发展精神,以打造资源节约型和环境友好型社会为目标,以推进产业发展一体化为抓手,加强创新体系建设,加快产业集聚,壮大产业规模;引导产业向产业链下游发展,产业价值链往下游延伸,加快有机硅产业与其他产业融合发展,实现产业做精做强与生态环境良性发展。

(2) 产业发展目标

① 总体目标

坚持以政府为主导、以企业为主体,合力推进产业健康、快速发展;不断提升自主创新能力、网络营销能力和区域品牌影响力,进一步彰显集群竞争力,推动产业跨越式发展;以立足长远发展为着眼点,建设好以有机硅为主导生物医药为辅助的产业发展新平台。

②具体目标

推动重大项目建设,扩大高端硅烷产能规模,开发下游产品,产业链进一 步延长,实现生产工艺的全循环。进一步加快工厂标准厂房建设,完善自动化 酯化生产线、自动化加成生产线、全自动含硫硅烷生产线、乙烯基硅烷系列自 动化生产线以及氨基硅烷系列、环氧硅烷系列、丙烯酸酯硅烷系列自动化生产 线的建设,加快硅烷偶联剂和交联剂以及硅烷衍生物品种的开发力度,保证有 机硅产业规模、竞争力、经济效益的稳步提升,建成国内生产规模较大的有机 硅烷龙头企业:加强生物医药产业发展,培育新的经济增长点。淘汰高污染、 高环境风险的落后生产能力、落后技术和装备,推广一批安全、清洁的先进适 用技术。提升环境友好型、绿色工艺产品比重,高端化工产品的产值比重提高 到 50%以上。产业万元增加值综合能耗比 2015 年下降 15%以上,万元产值用水 量下降 20%以上, 二氧化硫、化学耗氧量、氨氮、氮氧化物的排放总量较 2015 年均下降 10%以上。加大技术创新力度,研发支出占销售收入的比重达到 1.5% 以上,提升科技要素对产业增长的贡献率。力争到 2021 年园区产值达到 21 亿 元,到 2025年达到 45 亿元。形成龙头企业带动作用明显的集聚优势、配套协 作紧密的产业链优势、持续创新的技术领先优势、公共服务平台的支撑优势、 资源共享的市场网络优势:产业集群的综合实力和出口竞争力显著增强,成为 推动沙市区经济发展的重要力量,为全市经济发展注入强劲动力。

(3) 重点培育企业

培育以江汉精细化工龙头企业为核心,支持做大做强,强化其引领作用,同时培育引进相关生物医药化工类企业。

江汉精细化工有限公司是国内有机硅行业硅烷偶联剂产能最大、品种最多最全的领军企业。年产 12 大系列 100 多个品种的硅烷偶联剂和交联剂产品以及中间体 16 万多吨,是工信部公布的第一批"制造业单项冠军培育企业","湖北省首批隐形冠军示范企业",是中国氟硅工业协会认定的首批"功能硅烷产业化示范基地"。江汉精细化工是国家级高新技术企业,拥有"湖北省功能性硅烷工程技术研究中心"和"湖北省企业技术中心"。公司所处行业,是"十三五"期间国家重点鼓励发展的高新技术产业之一,硅烷产品属于国务院发布《中国制造 2025》推动发展的十大重点领域,国家九大战略新兴产业之一。

(4) 产业发展重点

以江汉精细化工为龙头,发展以硅烷产品为主的高附加值、高技术含量、低能耗、低排放的产品,围绕有机硅单体合成,建设有机硅从三氯氢硅到终端产品完整产业链。开发有机硅高端品种,如高温胶、室温胶、硅树脂、硅油及硅烷偶联剂等产品。布局相关的生物医药产业。优化资源配置,确立优势地位,建设副产物综合利用装置。

1.6.1.5 环境保护规划

(1) 环境保护目标

①空气环境目标

开发区规划范围内白水滩湿地公园大气环境功能区划为一类区,其他区域规划为二类区,执行国家空气环境质量《环境空气质量标准(GB3095-2012)》。

②水环境目标

白水滩公园内部景观水体按《地表水环境质量标准》(GB3838-2002)III类标准值进行整治保护,其它河渠执行《地表水环境质量标准》(GB3838-2002) V类标准值。

③固体废物治理目标

城镇生活垃圾无害化处置率 100%; 工业固废综合利用率达到 90%; 固体废物、危险废弃物和医疗废物全部实现安全处置。

④噪声环境保护目标

环境噪声标准执行《声环境质量标准》(GB3096-2008),规划按照《城市 区域环境噪声适用区划分技术规范》(GB/T15190-94)相关要求进行划分。

(2) 环境污染防治措施

①空气污染防治措施

加强现有的工业炉灶消烟除尘技术改造,提高除尘装置普及率和除尘效率,使之达到规定的排放标准。在控制区内严格控制新的污染企业的单项建设。对工业污染实施总量控制,提高工业废气处理率及烟尘排放合格率,提高烟尘处理效果,加强对工业废气的监测和管理,确保大气环境质量。对将要兴建的有可能对环境污染的工业项目,需通过严格的环境影响评价才能予以审批。控制机动车辆尾气排放标准和燃油类型,预防 NO、NO2污染。

②水污染防治措施

建设完善的污水处理系统,提高工业废水处理率,减少污染物排放。将工业用地集中连片设置,形成相对独立组团,以便统一进行污水处理和控制,有水污染的企业放在集镇河流的下游。严格控制有毒有害、难沉淀、难溶解的污染物的排放。加强环保、卫生检查,严格管理,便于发现问题及时纠正。

③声环境防治措施

严禁在特殊环境园区内如学校、居民居住区等产生噪声。加强城区绿化,起到降低噪声的良好作用,同时按《城市区域环境噪声标准》进行控制。进一步健全噪声的监测制度,全面开展监测工作,并且逐步实行责任制。进入工业园区组团内部车辆禁止鸣高音喇叭,拖拉机、农用车、摩托车、重载货车等要限线、限速、限时行驶,干道两侧应建设绿化隔声林带。完善道路系统,减少或消灭过境车辆的噪声对城区居住用地等人民生活工作区域的干扰以及烟尘飞扬。有噪音的施工作业应尽可能避开居民正常的休息时段;在居民稠密地区或有特殊防噪要求的地段,施工作业时应尽可能使用低噪音的施工机械和相应的作业方式,必要时在施工现场周围砌筑的噪声隔离墙上安装护板。

④固体废弃物综合治理

生活垃圾按居住片区定点分类收集。工业固体废弃物提高其综合利用率。有毒、放射性等的废物应进行特殊处理,不可与其它固体废弃物混排。建

立生活、工业废弃物的统一收集、运输体系,并集中进行无害化处理。

(3) 综合环境区划

规划根据沙市经济开发区的功能分区,将建设区域按环境保护区进行环境控制。2 类环境保护区:居民文教区、科研区、机关区、商业区。声环境质量标准值为:白天 ld≤60dB(A),夜间 ln≤50dB(A)。3 类环境保护区:工业区、仓储区、物流区。声环境质量标准值为:白天 ld≤65dB(A),夜间 ln≤55dB(A)。

1.6.2 环境功能区划

1.6.2.1 环境空气功能区划

本项目选址位于荆州市沙市化工园区工业园区内,根据《荆州市沙市化工园区总体规划(2013-2030)》可知,项目建设地块属于工业区,该区域空气环境功能划定为二类区域。

因此,本项目区域环境空气执行《环境空气质量标准》(GB3095-2012)二级标准。

1.6.2.2 地表水环境功能区划

根据荆州市沙市化工园区工业园环境功能区划要求,项目纳污水体为长江(荆州城区段),其目标水质为III类,水体执行《地表水环境质量标准》(GB3838-2002)III类水域功能区标准。

1.6.2.3 声环境功能区划

根据荆州市沙市化工园区工业园环境功能区划要求,项目选址所在区域为《声环境质量标准》(GB3096-2008)中3类声环境功能区。

1.6.2.4 地下水

该项目所在区域地下水功能区划为III类区,区域地下水环境质量执行《地下水质量标准》(GB14848-93)表 1 III类标准。

1.6.2.5 土壤

该项目所在区域土壤功能区划为III类区,区域土壤环境质量执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表1第二

类用地限值。

1.7 主要环境保护目标

本项目拟建地位于荆州市沙市化工园区内。根据项目周围自然环境状况、相关环保目标和环境敏感点分布,项目选址周围环境敏感点和环境保护目标列入表 1-17。湖北江瀚新材料股份有限公司各期项目建设前后周边环境敏感目标基本未发生变化。

	₹ 1-10	L O A H		ш	个党级总点 见衣
要素	环境敏感点名 称	方位	距离(m)	规模 (人)	保护级(类)别
	玉壶村	Е	1700	180	
	观音垱小学	ENE	3200	300	
	观音垱镇	ENE	3000	6000	
	观音垱中学	ENE	4400	500	
	麻林村	SE	2700	150	
	渔湖村	S	850	200	
	竺桥村	S	3300	350	
	跃进村	SW	4000	200	
环境	军刘台村	WSW	3600	120	《环境空气质量标准》
空气	白水村	W	700	350	(GB3095-2012)中二级标准
	河垱村	W	1850	80	
	向湖村	WNW	2150	180	
	长湖村	NW	3100	350	
	锣场镇	NW	800	7000	
	冰诚学校	NW	1300	300	
	高阳村	N	1500	230	
	花台村	NE	1800	300	
	新阳村	NE	2800	150	
	长江荆州城区 段	SW	9500	/	《地表水环境质量标准》
地表水	长湖	N	2500	/	(GB3838-2002)Ⅲ类水域标准
	豉湖渠	S	1500	/	《地表水环境质量标准》 (GB3838-2002) V 类水域标准
噪声	厂界	四周 200m 范围	/	/	《声环境质量标准》 (GB3096-2008)3类声环境功 能区

表 1-18 建设项目选址地周围主要环境敏感点一览表

1.8 评价技术路线

该项目环境影响报告书工作内容包括两个主要部分,一是资料收集、现状 监测、工程分析与预测、数据处理;二是环境影响报告书的编制与审查。

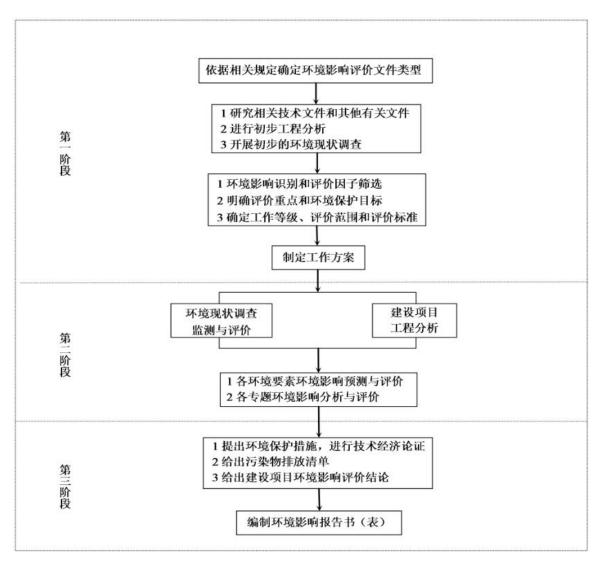


图 1-2 环境影响评价工作程序图

2 现有工程回顾

2.1 公司基本情况

2.1.1 公司概况

湖北江瀚新材料股份有限公司前身为荆州市江汉精细化工有限公司,是 1998 年改制组建的民营股份制企业,位于荆州市沙市化工园区内,公司现占地 500 亩,拥有总资产过 15 亿元,职工人数 720 余人,其中硕士 6 人,大专以上 学历的科技人员 220 人,拥有一支由 80 多名高、中级专业技术人员组成的研发 团队,现已开发出十二大系列 100 多个品种的硅烷偶联剂和硅烷交联剂产品,工厂建成多条工艺先进的自动化生产线。

从 2011 年起,公司先后被评定为湖北省企业技术中心、高新技术企业、湖北民营企业 100 强、湖北省科技型中小企业成长路线图计划重点培育企业、荆州市首届十佳创新型企业、荆州工业经济发展先进单位、"十二五"中国石油和化工优秀民营企业、中国精细化工企业 100 强等。

公司于 2006 年进行了硅烷偶联剂生产基地项目(硅烷偶联剂生产能力 2000t/a); 2010 年进行了年产 8000 吨绿色硅烷偶联剂项目(硅烷偶联剂生产能力 8000t/a); 2014 年进行了有机硅烷偶联剂建设项目(硅烷偶联剂生产能力 30000t/a); 2018 年进行了 5000 吨/年废弃物焚烧炉项目(暂时未建); 2019 年进行了 6 万吨/年三氯氢硅及 5.2 万吨/年绿色硅烷项目(硅烷偶联剂生产能力 52000t/a 建设完毕,6 万吨/年三氯氢硅建设中); 2021 进行了功能性硅烷偶联剂 2010 中间体建设项目(硅烷偶联剂生产能力 60000t/a,刚通过荆州市生态环境局的审批,即将进行建设)。

其中硅烷偶联剂生产基地项目、年产8000吨绿色硅烷偶联剂项目、有机硅烷偶联剂建设项目、6万吨/年三氯氢硅及5.2万吨/年绿色硅烷项目(5.2万吨/年绿色硅烷),目前已全部建设完毕,并通过了荆州市生态环境局的审批和验收,公司已形成9.2万吨/年绿色硅烷的生能力。本评价作为现有工程进行表述。

6万吨/年三氯氢硅及5.2万吨/年绿色硅烷项目(6万吨/年三氯氢硅),通过了荆州市生态环境局的审批,目前正在建设中。本评价作为在建工程进行表

述。

功能性硅烷偶联剂及中间体建设项目刚通过荆州市生态环境局的审批,即 将进行建设。本评价作为待建工程进行表述。

2.1.2 环保手续履行情况

湖北江瀚新材料股份有限公司现有项目环评手续情况见下表。

审批 序号 项目名称 环评批复 验收批复 项目运行现状 单位 荆州市 荆环保函文 荆环保控文 硅烷偶联剂生产基 正常运行,产量 生态环 1 [2006]139 号 [2009]115 号 地项目 2000 吨/年 境局 2006.11.20 2009.6.2 荆州市 荆环保审文 荆环保审文 年产8000吨绿色硅 正常运行,产量 2 生态环 [2011]284 号 [2010]174 号 烷偶联剂项目 8000 吨/年 境局 2010.10.14 2011.12.27 荆环保审文 正常运行,产量 [2016]60 号 荆州市 荆环保审文 26000 吨/年 有机硅烷偶联剂建 生态环 2016.5.30 3 [2014]122 号 设项目 正常运行,产量 境局 2014.7.21 企业自主验收 4000 吨/年 荆州市 荆环保审文 5000 吨/年废弃物 4 生态环 [2018]57 号 未进行验收 暂时未建 焚烧炉项目 2018.6.29 境局 5.2 万吨/年绿色 硅烷正常运行, 企业自主验收 6万吨/年三氯氢硅 荆州市 产量 52000 吨/年 荆环保审文[2019]9 生态环 及 5.2 万吨/年绿色 号 2019.5.5 6万吨/年三氯氢 硅烷项目 境局 未进行验收 硅建设中,未投 入运行 荆州市 功能性硅烷偶联剂 即将进行建设, 6 生态环 未进行验收 及中间体建设项目 未投入运行 境局

表 2-1 公司现有项目环评手续履行具体情况表

2.2 公司项目组成情况

2.2.1 硅烷偶联剂生产基地项目

湖北江瀚新材料股份有限公司(原荆州市江汉精细化工有限公司)于 2005 年在荆州市沙市化工园征地 150 亩,计划建设投资 3000 万元,新建"年产 2000 吨硅烷偶联剂"精细化工产品生产基地,主要生产产品为有机硅烷偶联剂系列产品。

产品主体为γ-氨丙基三乙氧基硅烷 JH-A110(单氨基硅烷)为 1000t/a,双

-[γ-(三乙氧基硅)丙基]-四硫化物 JH-Si69 (含硫硅烷) 为 1000t/a。

2.2.2 年产8000吨绿色硅烷偶联剂项目

湖北江瀚新材料股份有限公司(原荆州市江汉精细化工有限公司)于 2010 通过市场调查研究,决定投资 12000 万元,在荆州市江汉精细化工有限公司内预留空地扩建年产 8000 吨绿色硅烷偶联剂项目,项目占地面积为 53334 平方米。拟修建生产车间厂房 8 栋,建筑面积 23531.76 平方米;维修车间楼 1 栋,建筑面积 587.15 平方米;仓库 2 栋,建筑面积 2089.62 平方米;泵区 1 座,建筑面积 1173.69 平方米;垃圾处理厂 1 座,建筑面积 1173.69 平方米;锅炉房 1 栋,建筑面积 316.19 平方米;并新购置、安装生产设备,达到年产 8000 吨绿色硅烷偶联剂的生产能力。

产品主体为 3-氨丙基三乙氧基硅烷 JH-A110 (单氨基硅烷) 2000t/a, N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷 JH-A112 (双氨基硅烷) 3000t/a, 乙烯基三 (β-甲氧基乙氧基) 硅烷 JH-V172 (乙烯基硅烷) 2000t/a, n-辛基三乙氧基硅烷 JH-N308 (辛基硅烷) 1000t/a。

2.2.3 有机硅烷偶联剂建设项目

湖北江瀚新材料股份有限公司(原荆州市江汉精细化工有限公司)为尽快 占领国际市场份额,在原有厂区内扩大了主打产品硫系硅烷的生产能力,并研 发了辛基硅烷等其他7个硅烷偶联剂系列产品。扩建的硅烷系列产品规模共计3 万吨/年。

产品主体为双-[γ-(三乙氧基硅)丙基]-四硫化物 JH-Si69(含硫硅烷)为 14000t/a,乙烯基三甲氧基硅烷 JH-V171(乙烯基硅烷)3000t/a,四乙氧基硅烷 JH-T40(烷基硅烷)3500t/a,丙基三甲氧基硅烷 JH-N313(丙基硅烷)2000t/a, 3-甲基丙烯酰氧丙基三甲氧基硅烷 JH-O174(酰基硅烷)2000t/a, 3-(2,3-环氧 丙氧)丙基三甲氧基硅烷 JH-O187(环氧基硅烷)2000t/a,丙基三乙酰氧基硅烷 JH-PTAS(硅烷交联剂)1500t/a,苯基三甲氧基硅烷 JH-N610(苯基硅烷)2000t/a。

2.2.4 5000 吨/年废弃物焚烧炉项目

由于市场行情变化,以及客户对产品品质要求愈来愈高,湖北江瀚新材料

股份有限公司(原荆州市江汉精细化工有限公司)所生产的含硫硅烷的二级硅烷、氨基硅烷的二级硅烷、γ-氯丙基三乙氧基硅烷二级硅烷,现已不能达到市场标准的要求,无销售去向,只能作为废弃物,如委托其他单位代为处置需投入大量资金,因此公司投资 1686.5 万元在厂区原锅炉房北侧新建 5000 吨/年废弃物焚烧炉项目对上述三种废弃物进行焚烧处理,并提供生产热能,减少厂区供热蒸汽的使用量。湖北江瀚新材料股份有限公司(原荆州市江汉精细化工有限公司)于 2017 年 7 月委托湖北荆州环境保护科学技术有限公司承担 5000 吨/年废弃物焚烧炉项目的环境影响评价工作。焚烧处理 5000 吨/年废弃物。

由于目前公司生产工艺升级,含硫硅烷的二级硅烷、氨基硅烷的二级硅烷、 γ-氯丙基三乙氧基硅烷二级硅烷可用于生产硅烷低聚物系列产品,已无需进行 焚烧处理,5000 吨/年废弃物焚烧炉项目暂时未建设。

2.2.5 6 万吨/年三氯氢硅及 5.2 万吨/年绿色硅烷项目

湖北江瀚新材料股份有限公司(原荆州市江汉精细化工有限公司)于 2018 年投资 33000 万元,在公司北部预留用地进行 6 万吨/年三氯氢硅及 5.2 万吨/年绿色硅烷项目。三氯氢硅为硅烷偶联剂的主要原料,本项目将利用公司的副产品盐酸来产生三氯氢硅,既解决的副产品销路问题,也降低了原料购买的成本;扩建的绿色硅烷是由于公司现有生产精馏装置不足,扩建了精馏能力,部分绿色硅烷产品产能得到释放,将依托现有设备扩大产能。

产品主体为 3-甲基丙烯酰氧丙基三甲氧基硅烷 JH-O174(酰基硅烷)5000t/a,3-氨丙基三乙氧基硅烷 JH-A110(单氨基硅烷)5000t/a,3-(2,3-环氧丙氧)丙基三甲氧基硅烷 JH-O187 (环氧基硅烷)5000t/a,固态双-[3-(三乙氧基硅)-丙基]-四硫化物 JH-S69(固态含硫硅烷)15000t/a,N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷 JH-A112(双氨基硅烷)2000t/a,正硅酸乙酯 JH-T28(烷基硅烷)8000t/a,丙基三甲氧基硅烷 JH-N313(丙基硅烷)4000t/a,n-辛基三乙氧基硅烷 JH-N308(辛基硅烷)2000t/a,硅烷低聚物系列产品(JH-NP31)2000t/a,特种硅烷复配物系列(JH-A11231)4000t/a,另生产中间产品三氯氢硅 60000t/a。

目前硅烷生产线已经建设完毕投入生产,三氯氢硅生产线正在建设中。

2.2.6 功能性硅烷偶联剂及中间体建设项目

湖北江瀚新材料股份有限公司(原荆州市江汉精细化工有限公司)于2021

年70000万元,在厂区西北部预留空地建设功能性硅烷偶联剂及中间体建设项目,将新建生产车间4栋,包装车间1栋,成品罐区1座,中间体罐区1座,盐酸吸收区1座,洗桶区1座,泵区1座以及区域控制室1栋。

产品主体为 3-氨丙基三乙氧基硅烷 JH-A110 (单氨基硅烷) 5000t/a、3-(2,3-环氧丙氧) 丙基三甲氧基硅烷 JH-O187 (环氧基硅烷) 5000t/a、3-甲基丙烯酰氧 丙基三甲氧基硅烷 JH-O174 (酰基硅烷) 5000t/a、丙基三甲氧基硅烷 JH-N313 (丙基硅烷) 5000t/a、正硅酸乙酯 JH-T28 (烷基硅烷) 20000t/a、双-[3-(三乙氧基硅)-丙基]-四硫化物 JH-S69 (含硫硅烷) 20000t/a。

目前刚通过荆州市生态环境局的审批,即将进行建设。

2.2.7 公司现有工程组成

公司现有工程组成情况见下表。

表 2-2 公司现有工程组成情况一览表

序号	项目名 称	建设内容	现有工程内容	备注	
		一车间	装配 4 条生产线, 1 条线生产中间体 3-氯丙基三乙氧基硅烷 2600t/a, 1 条线生产产品乙烯基硅烷 1000t/a, 2 条线总生产产品烷基硅烷 6500t/a。		
		二车间	装配 6 条生产线, 2 条线总生产产品辛基硅烷 3000t/a, 2 条线总生产产品苯基硅烷 1000t/a, 2 条线总生产中间品三甲氧基硅烷 1100t/a。	硅烷偶联剂生产基地项目批复建设 有机硅烷偶联剂建设项目批复扩建	
		三车间	装配 5 条生产线, 2 条线总生产产品双胺基硅烷 1700t/a, 3 条线总生产产品环氧基硅烷 7100t/a。		
		四车间	装配 2 条加工线,总加工固态含硫硅烷 16000t/a。	品特	
		五车间	装配 8 条生产线, 3 条线总生产产品氨基硅烷 1000t/a, 2 条线总生产产品双胺基硅烷 1600t/a; 2 条线总生产产品乙烯基三硅烷 1000t/a; 2 条线总生产产品特种硅烷复配物 2500t/a。		
		六车间	5 个六车间, 5 条线总生产产品含硫硅烷 8000t/a。		
1	主体工程	七车间	2 个七车间, 2 条线总生产产品含硫硅烷 5500t/a; 1 条线生产产品特种硅烷复配物 1000t/a。		
		八车间	装配 6 条生产线, 2 条线总生产中间品 3-氯丙基三乙氧基硅 8400t/a, 1 条线生产产品苯基硅烷 1000t/a, 2 条线总生产丙基硅烷 6000 吨。	左文 0000 时纪女社经细联刘琦口拟复长寿	
		九车间	1)	年产 8000 吨绿色硅烷偶联剂项目批复扩建有机硅烷偶联剂建设项目批复扩建	
		十车间	2个十车间,装配 14条生产线,14条线总生产中间品 3-氯丙基三氯硅烷 9000t/a,中间品丙基三氯硅烷 1700t/a,中间品四氯化硅 1800t/a。		
		十一车间	装配 8 条生产线, 8 条线总生产产品氨基硅烷 5555t/a。		
		十二车间	装配 7 条生产线,1 条线生产产品双胺基硅烷 1600t/a, 2 条线总生产产品烷基硅烷 1000t/a, 2 条线总生产产品酰基硅烷 7260t/a, 1 条线生产产品硅烷低聚物 2000t/a, 1 条线生产产品特种硅烷复配物 500t/a。		

		自动化车间	3 个自动化车间装配 10 条生产线, 1 条线生产中间品 3-氯丙基三乙氧基硅 10000t/a, 2 条线总生产中间品三甲氧基硅烷 2200t/a, 2 条线总生产产品硅烷交联剂 1500t/a, 2 条线总生产产品乙烯基硅烷 3000t/a。2 条总生产线生产烷基硅烷 6000 吨。				
		乙炔生产车间	装配 4 条生产线(两开两备),总生产中间品乙炔 1000t/a。				
		7#车间	装配 5000t/a 连续精馏环氧基硅烷生产线; 5000t/a 连续精馏单氨基硅烷生产线;				
		/#÷雨	5000t/a 连续精馏酰基硅烷生产线。				
		9#车间	装配 3450t/a 单氨基硅烷粗品生产线;]			
		13#车间	装配 2 条 3-氯丙基三乙氧基硅烷中间体生产线 30000t/a。				
		17#车间	装配盐酸吸收塔,用于吸收处理 13#车间和 21#车间产生的 HCl。	6 万吨/年三氯氢硅及 5.2 万吨/年绿色硅烷项			
		21#车间	装配 5 条三甲氧基硅烷中间体生产线 10000t/a。	目批复扩建			
		22#车间	三氯氢硅合成精馏装置,产能 60000t/a(建设中)。				
		23#车间	三氯氢硅合成辅助装置:合成尾气变压吸附装置、盐酸解析装置等(建设中)。				
		硅粉车间	硅块破碎制粉装置,产能 15000t/a。	İ			
		28#车间	三氯氢硅原料硅粉研磨及储存仓库(建设中)。				
		焚烧车间	5000 吨/年废弃物的焚烧炉(暂时未建)。	5000 吨/年废弃物焚烧炉项目批复			
		8#车间	装配 5000t/a 连续精馏环氧基硅烷生产线; 5000t/a 连续精馏单氨基硅烷生产线;				
			5000t/a 连续精馏酰基硅烷生产线。				
		5#车间	装配 20000t/a 含硫烷生产线。	 功能性硅烷偶联剂及中间体建设项目批复扩			
			装配 2 条 3-氯丙基三乙氧基硅烷中间体生产线 30000t/a。	建			
		* * *	装配丙基硅烷生产线 5000t/a,烷基硅烷生产线 20000t/a。				
		, —	装配公司产品包装生产线。				
		盐酸吸收区	装配盐酸吸收塔,用于吸收处理 24#车间和 26#车间产生的 HCl。				
		给水工程		硅烷偶联剂生产基地项目批复建设			
2	公用工 程	排水工程	采用雨污分流体制,雨水采用排水管道收集,就近排入厂区雨水排水管网,排入园区的雨水排水管网,循环冷却水经雨水排口溢出。生产废水和生活废水经污水处理站处理达标后经园区污水管网排入荆州申联环境科技有限公司污水处理厂,最终排入长江(荆州段)。	6 万吨/年三氯氢硅及 5.2 万吨/年绿色硅烷项			

		供热工程	使用国电长源蒸汽为热能。	
		六州二生		
		供电工程	高压配电室 2 个,低压主配电室 8 个,车间配电室 26 个,公司现有供电由荆州	
			市电力局供给。	
			3 个冷冻站, 1 个位于十车间以北,设置 7 台氨压缩机和 2 座 10m³ 氨储罐; 1	
		冷冻工程	个位于五车间以南,设置3台氨压缩机和2座4.5m3氨储罐;1个位于23#车间	
			西边,盐水冷冻机组 12 台(R22 制冷剂)。	
		仓库	10 栋仓库,用于存放生产所需原辅材料及部分产品。	
		堆场	1250m ² 的货物堆场、1696m ² 的装卸台、1306m ² 的设备堆场、2445m ² 的材料堆	
		上	场。	
			三氯氢硅储罐 40m³10 台、100m³8 台,氯丙烯储罐 40m³10 台、100m³4 台,甲	
			醇 50m ³ 5 台、150m ³ 1 台、500m ³ 2 台,乙醇储罐 150m ³ 4 台、500m ³ 2 台,液氨	
		原料储罐区	储罐 20m ³ 8 台、10m ³ 3 台、4.5m ³ 2 台、120m ³ 2 台,四氯化硅储罐 25m ³ 10 台、	
		, , , , , , , , , , , , , , , , , , ,	50m³1 台、40m³2 台、100m³7 台, 丙基三氯硅烷储罐 25m³10 台、50m³1 台、40m³4	
			会 100m³7 会 副产品卦酸储罐 600m³4 会 100m³6 50m³12 会 80m³5 台竿	
			$1 台 500 \text{m}^3$ 的 3 -氯丙基三氯硅烷立式储罐, $1 台 500 \text{m}^3$ 的 3 -氯丙基三乙氧基硅	硅烷偶联剂生产基地项目批复建设 年产 8000 吨绿色硅烷偶联剂项目批复建
			烷立式储罐,1台500m³的四乙氧基硅烷立式储罐,2台500m³的浓盐酸(30%)	
3	储运、辅	成具鑵豆 由	立式储罐, 3 台 100m³ 的 3-氨丙基三乙氧基硅烷卧式储罐, 3 台 100m³ 的 3-(2,3-	6万吨/年三氯氢硅及5.2万吨/年绿色硅烷项
3	助工程		以复五氨) 由其三田氨其廷烷以式煤罐 2 4 100() 的 2 用其由烙雕复由其三	目批复建设
		円件唯区	甲氧基硅烷卧式储罐,3台100m³的丙基三甲氧基硅烷卧式储罐,12台100m³	功能性硅烷偶联剂及中间体建设项目批复建
			中毛垄址, 从 的	设
			的双-[3-(三乙氧基硅)-丙基]-四硫化物卧式储罐。	
		办公楼、实验	一栋办公楼、实验楼,用于管理人员办公科研。	
		楼		
		食堂、宿舍楼	食堂1间,4个灶台;宿舍楼一栋,用于职工倒班临时休息。	
		修理车间	一栋修理车间,用于生产设备维修。	
		洗桶区	用于产品中转桶的清洗。	
)=.tA	液态化学品原料主要采取槽罐车的方式进行运输,运输路线主要依托东方大道	
		运输	及园区道路。	
	1			

		综合废水处理	污水处理站建筑面积 10037.58 平方米,设计处理规模为 3750 m^3/d ,处理工艺为污水收集池 \rightarrow 中和池 \rightarrow 中和沉淀池 \rightarrow UASB 厌氧反应器 \rightarrow 初沉池 \rightarrow 预曝池 \rightarrow 生物接触氧化 \rightarrow 二沉池。	
				 硅烷偶联剂生产基地项目批复建设
				年产8000吨绿色硅烷偶联剂项目批复建设
	环保工	污水收集池		6 万吨/年三氯氢硅及 5.2 万吨/年绿色硅烷项
4	程	酯化尾气回收	5 个盐酸吸收塔区,采用两级降膜吸收器的塔式法工艺进行吸收处理。	目批复建设
		工艺尾气处理	2个工艺喷淋装置区,采用水喷淋吸收处理工艺。	功能性硅烷偶联剂及中间体建设项目批复建
		消防、循环水	3座消防、循环水池,1号池容积为1500m³;2号池容积为3650m³;3号池容	设
		池	积为 7000m³。	
		固废暂存间	50m²,防渗地坪,和防漏裙脚。	
		储罐区围堰	储罐区修建有围堰,预防物料泄露造成影响。	

2.3 公司主要产品

公司主要产品情况见下表。

表 2-3 公司各期项目主要产品、中间品、副产品情况一览表

项目	类别	名称	生产规模	去向	与上个项目对 应关系
		γ-氨丙基三乙氧基硅烷 JH-A110(单氨基硅烷)	1000t/a	外售	新增
硅烷偶联 剂生产基 地项目	产品	双-[γ-(三乙氧基硅)丙 基]-四硫化物 JH-Si69(含 硫硅烷)	1000t/a	外售	新增
	副产	氯化铵	278t/a	外售	新增
	品	二级硅烷产品	50t/a	自用	新增
		3-氨丙基三乙氧基硅烷 JH-A110(单氨基硅烷)	2000t/a	外售	扩建
	→ □	N-(β-氨乙基)-γ-氨丙基三 甲氧基硅烷 JH-A112(双 氨基硅烷)	3000t/a	外售	新增
	产品	乙烯基三(β-甲氧基乙氧 基)硅烷 JH-V172(乙烯 基硅烷)	2000t/a	外售	新增
年产 8000 吨		n-辛基三乙氧基硅烷 JH-N308(辛基硅烷)	1000t/a	外售	新增
绿色硅烷		3-氯丙基三氯硅烷	9500t/a	自用	新增
偶联剂项	主要	3-氯丙基三乙氧基硅烷	11000t/a	自用	新增
目	中间	丙基三氯硅烷	1800t/a	自用	新增
	品	四氯化硅	1800t/a	自用	新增
		n-辛基三氯硅烷	1000t/a	自用	新增
		氯化铵	740t/a	外售	扩建
		氯化钠	297t/a	外售	扩建
		乙二胺盐酸盐	2800t/a	外售	扩建
	品品	盐酸	2260t/a	外售(三氯氢 硅生产线建成 后自用)	扩建
		二级硅烷产品	200t/a	自用	
		双-[γ-(三乙氧基硅)丙 基]-四硫化物 JH-Si69(含 硫硅烷)	14000t/a	外售	扩建
有机硅烷	产品	乙烯基三甲氧基硅烷 JH-V171(乙烯基硅烷)	3000t/a	外售	扩建
偶联剂建 设项目		四乙氧基硅烷 JH-T40(烷 基硅烷)	3500t/a	外售	新增
		丙基三甲氧基硅烷 JH-N313(丙基硅烷)	2000t/a	外售	新增
		3-甲基丙烯酰氧丙基三甲 氧基硅烷 JH-O174(酰基	2000t/a	外售	新增

		硅烷)			
		3- (2,3-环氧丙氧) 丙基三 甲氧基硅烷 JH-O187 (环 氧基硅烷)	2000t/a	外售	新增
		丙基三乙酰氧基硅烷 JH-PTAS(硅烷交联剂)	1500t/a	外售	新增
		苯基三甲氧基硅烷 JH-N610(苯基硅烷)	2000t/a	外售	新增
		3-氯丙基三氯硅烷	9000t/a	自用	扩建
	主要	3-氯丙基三乙氧基硅烷	10000t/a	自用	扩建
	中间	丙基三氯硅烷	1700t/a	自用	扩建
	品	四氯化硅	1800t/a	自用	扩建
		三甲氧基硅烷	3300t/a	自用	扩建
		氯化钠	4667t/a	外售	扩建
	副产品	盐酸	58821t/a	外售(三氯氢 硅生产线建成 后自用)	扩建
		二级硅烷产品	640t/a	自用	扩建
	产品	3-甲基丙烯酰氧丙基三甲 氧基硅烷 JH-O174(酰基 硅烷)	5000t/a	外售	扩建
		3-氨丙基三乙氧基硅烷 JH-A110(单氨基硅烷)	5000t/a	外售	扩建
		3- (2,3-环氧丙氧) 丙基三 甲氧基硅烷 JH-O187 (环 氧基硅烷)	5000t/a	外售	扩建
		固态双-[3-(三乙氧基硅)- 丙基]-四硫化物 JH-S69 (固态含硫硅烷)	15000t/a	外售	扩建
6 万吨/年 三氯氢硅		N-(β-氨乙基)-γ-氨丙基三 甲氧基硅烷 JH-A112(双 氨基硅烷)	2000t/a	外售	扩建
及 5.2 万吨/年绿		正硅酸乙酯 JH-T28(烷基 硅烷)	8000t/a	外售	扩建
色硅烷项目		丙基三甲氧基硅烷 JH-N313(丙基硅烷)	4000t/a	外售	扩建
		n-辛基三乙氧基硅烷 JH-N308(辛基硅烷)	2000t/a	外售	扩建
		硅烷低聚物系列产品 (JH-NP31)	2000t/a	外售	新增
		特种硅烷复配物系列 (JH-A11231)	4000t/a	外售	新增
		3-氯丙基三乙氧基硅烷	30000t/a	自用	扩建
	主要	3-氯丙基三氯硅烷	30000t/a	自用	扩建
	中间	三甲氧基硅烷	10000t/a	自用	扩建
	品	四氯化硅	5790t/a	自用	扩建
		丙基三氯硅烷	5790t/a	自用	扩建

		n-辛基三氯硅烷	2000t/a	自用	扩建
		三氯氢硅	60000t/a	未建成	扩建
		氯化钠	944t/a	外售	扩建
			929t/a	外售	扩建
	副产	乙二胺盐酸盐	870t/a	外售	扩建
	日 日 日	盐酸	104494t/a	外售(三氯氢 硅生产线建成 后自用)	扩建
		二级硅烷产品	1860t/a	自用	扩建
		3-氨丙基三乙氧基硅烷 JH-A110(单氨基硅烷)	5000t/a	外售	扩建
	产品	3- (2,3-环氧丙氧) 丙基三 甲氧基硅烷 JH-O187 (环 氧基硅烷)	5000t/a	外售	扩建
		3-甲基丙烯酰氧丙基三甲 氧基硅烷 JH-O174(酰基 硅烷)	5000t/a	外售	扩建
74, 4K, M4.7+		丙基三甲氧基硅烷 JH-N313(丙基硅烷)	5000t/a	外售	扩建
功能性硅 烷偶联剂		正硅酸乙酯 JH-T28 (烷基 硅烷)	20000t/a	外售	扩建
及中间体 建设项目		双-[γ-(三乙氧基硅)丙 基]-四硫化物 JH-Si69(含 硫硅烷)	20000t/a	外售	扩建
	主要中间品	3-氯丙基三乙氧基硅烷	30000t/a	自用	扩建
	副产品	盐酸	104000t/a	外售(三氯氢 硅生产线建成 后自用	扩建
		氯化钠	4440t/a	外售	扩建

公司产品质量标准情况详细见下表。

表 2-4 公司现有工程产品质量标准一览表

化学名称	CAS NO	分子式	分子量	沸点	密度 g/cm³	质量含量	企业标准 号
氨基硅烷	919-30-2	C ₉ H ₂₃ NO ₃ S i	221.37	217℃	0.945±0.005	≥95.0%	Q/JJH05- 2013-E
双胺基硅烷	1760-24-3	C ₈ H ₂₂ N ₂ O ₃ Si	222.36	116℃	1.2±0.005	≥95%	Q/JJH05- 2013-C
含硫硅烷	40372-72-	C ₁₈ H ₄₂ O ₆ S ₄ Si ₂	538.95	85-88℃	1.08±0.01	含硫量 ≥22%	Q/JJH05- 2013
乙烯基三硅 烷	1067-53-4	C ₁₁ H ₂₄ O ₆ Si	280.39	285℃	1.04±0.02	≥97%	Q/JJH05- 2013-E
辛基硅烷	2943-75-1	C ₁₁ H ₂₆ O ₃ Si	276.49	98℃	0.879±0.005	≥97%	Q/JJH05- 2013-D
乙烯基硅烷	2768-02-7	C ₅ H ₁₂ O ₃ Si	148.23	122-123℃	0.9±0.005	≥97%	Q/JJH05- 2013-B
烷基硅烷	11099-06- 02	C ₈ H ₂₀ O ₄ Si	208.33	168℃	1.06±0.002	SiO ₂ 含量 28-40%	Q/JJH05- 2013

丙基硅烷	1067-06-0 2	C ₆ H ₁₆ O ₃ Si	164.27	142℃	0.938±0.005	≥98%	Q/JJH05- 2013-B
酰基硅烷	2530-85-0	$C_{10}H_{20}O_5Si$	248.35	190℃	1.045±0.005	≥97%	Q/JJH05- 2013-E
环氧基硅烷	2530-83-8	C ₉ H ₂₀ O ₅ Si	236.34	290℃	1.07±0.005	≥97%	Q/JJH05- 2013-E
硅烷交联剂	17865-07- 5	C ₉ H ₁₆ O ₆ Si	248.30	236.2℃	1.117±0.005	≥95%	Q/JJH05- 2013-F
苯基硅烷	2996-92-1	C ₉ H ₁₄ O ₃ Si	198.29	233℃	1.062±0.005	≥98%	Q/JJH05- 2013-D
硅烷低聚物 系列产品 JH-NP31	N.A	N.A	N.A	N.A	1.024±0.01	40±10.0 (SiO2)	Q/JJH06- 2013
特种硅烷复 配物系列 JH-A11231	N.A	N.A	N.A	N.A			

公司现有工程中间品质量标准情况详细见下表。

表 2-5 公司现有工程中间品质量标准一览表

化学名称	CAS NO	分子式	分子量	沸点	密度 g/cm³	质量含量	企业标准 号
3-氯丙基三 氯硅烷	2550-06-3	C ₃ H ₆ Cl ₄ Si	211.98	178.3℃	1.3550~1.365 0	≥98.5%	Q/JJH05- 2013-A
3-氯丙基三 乙氧基硅烷	5089-70-3	C ₉ H ₂₁ ClO ₃ Si	240.8	100℃	1.0020±0.005 0	≥98.5%	Q/JJH05- 2013-E
丙基三氯硅 烷	141-57-1	CH ₃ CH ₂ C H ₂ SiCl ₃	177.53	124.7℃	1.195±0.0050	≥98%	Q/JJH05- 2013-A
四氯化硅	10026-04- 7	SiCl ₄	169.9	57.6℃	1.48±0.0050	≥98%	Q/JJH05- 2013-A
n-辛基三氯 硅烷	5283-66-9	C ₈ H ₁₇ Cl ₃ Si	247.67	233℃	1.07±0.0050	≥95%	Q/JJH05- 2013-A
三甲氧基硅 烷	2487-90-3	C ₃ H ₁₀ O ₃ Si	122.2	85℃	0.9600±0.005 0	≥97%	Q/JJH05- 2013-B
三氯氢硅 JH-I10	10025-78- 2	SiHCl ₃	135.43	31.8℃	1.37±0.0050	≥99%	GB 28654 -2012

公司现有工程副产品质量标准情况详细见下表。

表 2-6 公司现有工程副产品质量标准一览表

化学名称	CAS NO	分子式	分子量	沸点	密度 g/cm³	质量含量	企业标准号
盐酸	7647-01-0	HCl	36.46	57℃	1.2	30%-33%	GB320-2006
氯化铵	12125-02-9	NH ₄ Cl	53.49	520℃	1.5274	≥97%	GB2946-2008
氯化钠	7647-14-5	NaCl	58.44	1413℃	1.15	≥20%	GB1253-2007
乙二胺盐 酸盐	18299-54-2	C ₂ H ₉ ClN ₂	96.56	117℃	0.9	≥98%	

2.4 公司公用工程

2.4.1 给水系统

公司用水主要由荆州市自来水公司现有供水管网提供,供水能力100m³/h。

建立冷却水循环水池。

2.4.2 排水系统

采用雨污分流体制,雨水采用排水管道收集,就近排入厂区雨水排水管网, 排入园区的雨水排水管网,循环冷却水经雨水排口溢出。生产废水和生活废水 经污水处理站处理达标后经园区污水管网排入荆州申联环境科技有限公司污水 处理厂,最终排入长江(荆州城区段)。

2.4.3 供热系统

由国电长源荆州热电有限公司提供管道蒸汽。

2.4.4 供电系统

高压配电室 2 个, 低压主配电室 8 个, 车间配电室 26 个, 公司供电由荆州市电力局供给。

2.4.5 冷冻工程

3 个冷冻站,1 个位于十车间以北,设置 7 台氨压缩机和 2 座 10m³ 氨储罐;1 个位于五车间以南,设置 3 台氨压缩机和 2 座 4.5m³ 氨储罐;1 个位于 23#车间西边, 盐水冷冻机组 12 台(R22 制冷剂)。

2.5 现有工程生产工艺流程及产污节点

2.6 现有工程环境保护措施

2.6.1 大气污染防治措施

公司生产过程产生的 HCl 气体大部分抽至盐酸吸收区,采用二级降膜吸收塔制盐酸。

公司中间品 3-氯丙基三乙氧基硅烷、中间品三甲氧基硅烷、产品烷基硅烷、产品丙基硅烷、产品硅烷交联剂、产品苯基硅烷这六个产品生产过程中有酯化 反应,会产生大量的 HCl 尾气。

各车间的 HCl 尾气抽至盐酸吸收区后,采用二级降膜吸收器的塔式法工艺进行盐酸吸收处理,经处理 HCl 尾气经反复循环二级降膜吸收处理,生成浓度30-33%的盐酸,盐酸将作为三氯氢硅产生的原料使用。少量未被吸收的 HCl 再

经碱液吸收处理带入废水,少量废气在盐酸吸收区以无组织的形式排放。 其处理工艺流程如下:

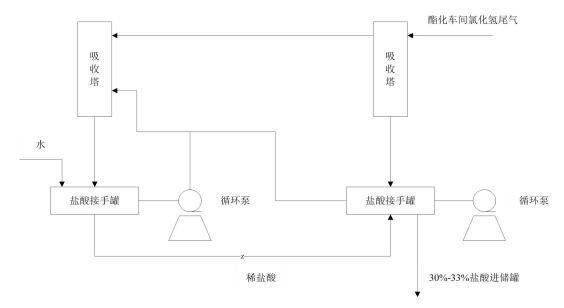


图 2-1 氯化氢尾气处理工艺流程图

另外公司在生产过程中的工艺尾气,采用两级冷凝回收后,送至公司的尾气处理区,经水喷淋吸收处理,大部分尾气被带入废水,少量废气在尾气处理区以无组织的形式排放。

2.6.2 水污染防治措施

公司废水主要为尾气处理废水、生活污水、清洗废水和初期雨水,废水全部收集至污水处理站进行处理,污水处理站处理能力为 3750m³/d,现处理废水量为 574.72m³/d。污水处理站处理工艺为生产废水→格栅→调节均衡池→中和池→蒸汽加热池→UASB 厌氧反应器→初沉池→预曝池→生物接触氧化→二沉池→达标排放。公司废水处理达标后经开发区污水管网排入荆州申联环境科技有限公司污水处理厂集中处理,最终排入长江(荆州城区段)。

公司污水处理站其处理工艺流程图见下图。

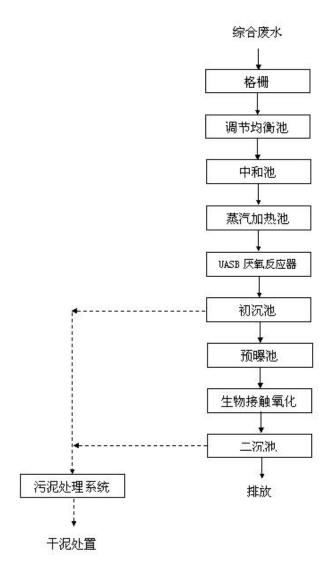


图 2-2 污水处理站工艺流程图

2.6.3 噪声污染防治措施

公司噪声污染源采用建筑隔声、消声器、减震等措施进行治理。同时修建隔声间,对车间墙壁、门窗进封闭、修建绿化隔离带等措施进行治理,治理后噪声值降低 20~25dB(A)。

2.6.4 固体废物污染防治措施

公司固体废物分类处理:污水厂污泥储存在专用仓库待集中送生活垃圾填埋场进行填埋;石灰渣作为建筑材料外售;生活垃圾由环卫部门集中清运。废活性炭渣和废矿物油分别交由北控城市环境资源(宜昌)有限公司和荆州市昌盛环保工程有限公司进行处理处置。

2.7 现有工程污染物排放及达标情况

湖北江瀚新材料股份有限公司于 2020 年 5 月委托武汉谱尼科技有限公司进行了 6 万吨/年三氯氢硅及 5.2 万吨/年绿色硅烷项目竣工环境保护验收监测工作,武汉谱尼科技有限公司于 2020 年 12 月出具了《荆州市江汉精细化工有限公司年产 6 万吨/年三氯氢硅及 5.2 万吨/年绿色硅烷项目竣工环境保护验收监测报告》。

本报告将根据《荆州市江汉精细化工有限公司年产 6 万吨/年三氯氢硅及 5.2 万吨/年绿色硅烷项目竣工环境保护验收监测报告》的监测数据,分析公司现有工程污染物排放及达标情况。

2.7.1 大气污染物排放及达标情况

根据验收监测报告内容,公司已建工程无组织废气厂界监测统计结果列入下表。

监测	监测	监测		监测	点位		最大	标准	达标
日期	项目	频次	监控点	监控点	监控点	监控点	植	限值	评价
H 793	•Д П	2000	01	02	∘3	04	IH.	PK III.	
		1	0.049	0.097	0.191	0.058	0.191		达标
	氯化	2	0.034	0.113	ND	0.066	0.113	0.20	达标
2020	氢	3	ND	ND	ND	0.049	0.049	0.20	达标
年05		4	ND	0.104	0.097	0.101	0.104		达标
月 20		1	0.6	ND	ND	ND	0.6		达标
日	甲醇	2	0.2	ND	ND	ND	0.2	12	达标
		3	ND	ND	ND	ND	ND	12	达标
		4	ND	ND	ND	ND	ND		达标
		1	0.035	0.105	0.030	0.035	0.105		达标
	氯化	2	0.028	0.130	0.126	0.135	0.135	0.20	达标
2020	氢	3	0.030	0.142	0.199	0.148	0.199	0.20	达标
年05		4	0.146	0.157	0.151	0.153	0.157		达标
月 21		1	ND	ND	ND	ND	ND		达标
日	田神	2	ND	ND	ND	ND	ND	12	达标
	甲醇	3	ND	ND	ND	ND	ND	12	达标
		4	ND	ND	ND	ND	ND		达标

表 2-7 无组织排放废气监测结果 单位: mg/m3

监测结果表明,监测期间(2020年05月20~21日),公司厂界无组织排放废气中氯化氢、甲醇浓度均满足《大气污染物综合排放标准》(GB16297-1996)表2无组织排放监控浓度限值要求。

2.7.2 废水污染物排放及达标情况

根据验收监测报告内容,公司现有工程废水监测结果统计列入下表。

表 2-8 废水监测结果统计表 单位: mg/L, pH 无量纲

监测	监测	내는 사이로로 그			监测结果)
日期	点位	监测项目	1	2	3	4	均值或范围	标准限值	达标评价
		рН	3.13	3.14	3.50	3.43	3.13-3.50		
	厂区	COD	1130	1270	1550	1740	1423		
	污水	BOD_5	464	520	650	730	591		
	处理	NH ₃ -N	76.6	93.2	90.1	120	95.0		
	站进	SS	18	22	16	15	18		
2020年	口	石油类	0.72	0.98	1.03	1.72	1.11		
2020年 05月20		动植物油	1.48	1.52	1.54	0.66	1.30		
日 日		pН	7.16	7.08	7.06	7.00	7.00-7.16	6-9	达标
	厂区	COD	130	142	151	251	169	500	达标
	污水	BOD_5	46.0	51.0	54.4	90.0	60.4	300	达标
	处理	NH ₃ -N	0.465	0.257	0.215	2.45	0.847		
	站出	SS	8	6	7	7	7	400	达标
	口	石油类	ND	ND	ND	ND	ND	20	达标
		动植物油	ND	ND	ND	ND	ND	100	达标
		рН	3.11	3.16	3.45	3.46	3.11-3.46		
	厂区	COD	1190	1460	1360	1420	1358		
	污水	BOD_5	500	613	570	596	570		
2020年	处理	NH ₃ -N	58.7	108	116	51.3	83.5		
05月21	站进	SS	11	15	12	11	12		
日	П	石油类	0.64	0.58	1.24	1.35	0.95		
		动植物油	2.44	2.00	1.32	1.65	1.85		
	厂区	рН	7.00	7.20	7.31	6.81	6.81-7.31	6-9	达标
	污水	COD	259	84	126	117	147	500	达标

处理	BOD_5	90.0	28.6	45.4	41.0	51.3	300	达标
站出	NH ₃ -N	0.143	0.518	0.409	0.615	0.421		
	SS	9	9	8	9	9	400	达标
	石油类	ND	ND	ND	ND	ND	20	达标
	动植物油	ND	ND	ND	ND	ND	100	达标

监测结果表明,监测期间(2020年05月20~21日),厂区污水处理站出口中化学需氧量、五日生化需氧量、悬浮物、动植物油、石油类浓度和pH值均满足《污水综合排放标准》(GB8978-1996)表4三级标准要求限值要求和荆州申联环境科技有限公司污水处理厂进水水质要求。

2.7.3 噪声污染排放及达标情况

根据验收监测报告内容,公司现有工程厂界噪声监测结果统计列入下表。

表 2-9 厂界噪声监测结果统计表 单位: dB(A)

测点 编号	监测点位置	主要声源	监测时	·段	结果 (Leq)	标准限值	达标评价
			2020年05	昼间	52.5	65	达标
	厂界东外 1m	/I. → π□ →	月 20 日	夜间	52.2	55	达标
1#	处▲1#	生产噪声	2020年05	昼间	55.0	65	达标
			月 21 日	夜间	51.9	55	达标
			2020年05	昼间	52.5	65	达标
2//	厂界东外 1m	4. 文唱士	月 20 日	夜间	50.7	55	达标
2#	处▲2#	生产噪声	2020年05	昼间	52.1	65	达标
			月 21 日	夜间	51.9	55	达标
			2020年05	昼间	62.2	65	达标
211	厂界南外 1m	 	月 20 日	夜间	49.9	55	达标
3#	处▲3#	交通噪声	2020年05	昼间	55.0	65	达标
			月 21 日	夜间	52.6	55	达标
			2020年05	昼间	59.9	65	达标
4#	厂界南外 1m	公 温陽吉	月 20 日	夜间	49.2	55	达标
4#	处▲4#	交通噪声	2020年05	昼间	59.3	65	达标
			月 21 日	夜间	50.2	55	达标
			2020年05	昼间	56.1	65	达标
5#	厂界西外 1m	生产噪声	月 20 日	夜间	49.9	55	达标
3#	处▲5#	生厂際円	2020年05	昼间	54.3	65	达标
			月 21 日	夜间	51.2	55	达标
			2020年05	昼间	52.8	65	达标
6#	厂界西外 1m	生产噪声	月 20 日	夜间	47.1	55	达标
0#	处▲6#		2020年05	昼间	55.1	65	达标
			月 21 日	夜间	51.9	55	达标
			2020年05	昼间	60.0	65	达标
7#	厂界北外 1m	交通噪声	月 20 日	夜间	53.1	55	达标
'#	处▲7#	人四際尸	2020年05	昼间	54.2	65	达标
			月 21 日	夜间	52.6	55	达标
			2020年05	昼间	59.1	65	达标
8#			月 20 日	夜间	53.7	55	达标
0#	处▲8#	交通噪声	2020年05	昼间	56.8	65	达标
			月 21 日	夜间	52.8	55	达标

监测结果表明,监测期间(2020年05月20~21日),公司厂界噪声监测点 昼、 夜间监测值均满足《工业企业厂界环境噪声排放标准》(GB 12348-2008)

3类标准限值的要求。

2.7.4 固体废物污染排放及达标情况

(1) 生活垃圾

公司员工生活办公产生生活垃圾,公司劳动定员 700 人,每年工作 300 天,按照每人每天产生 0.5kg 生活垃圾计算,项目员工生活产生生活垃圾总量为 105t/a。

(2) 石灰渣

公司在乙烯基硅烷生产的水解工序中会产生石灰渣,其产生量约为4000t/a。

(3) 污水处理剩余污泥

公司污水处理过程产生剩余污泥,产生量为 1800t/a。根据国土资源部武汉 资源环境监督检测中心(中国地质大学(武汉)分析测试中心)对该公司污水 处理厂污泥性质鉴定报告结论:该厂污泥不属于危险性废物。建议将该厂污泥 进行资源化利用,可作为制砖建材或者进入生活垃圾填埋场进行填埋处理。

(4) 活性炭渣

公司在硅烷交联剂生产脱色过程中产生少量活性炭渣危险性废物,其产生量约为 8.78t/a。

(5) 废矿物油

公司在设备运行过程中产生少量的废矿物油危险性废物,其产生量约为16.66t/a。

公司现有工程固废产生情况见下表。

		化量10 固次	加入人臣	18 70 7070	
污染物来源	名称	固废性质	产生量 (t/a)	排放量 (t/a)	处置措施
职工生活办 公	生活垃圾	生活垃圾	105	0	环卫部门收集清运
生产过程	石灰渣	一般工业废物	4000	0	作为建筑材料外售
污水处理	剩余污泥	一般工业废物	1800	0	作为制砖材料或进 入生活垃圾场进行 填埋处理
生产过程	活性炭渣	危险废物 HW49	8.78	0	交有资质单位处置

表 2-10 固废产排及外置情况一览表

		900-039-49			
设备运行	废矿物油	危险废物 HW08 900-249-08	16.66	0	交有资质单位处置
总计			5930.44	0	

公司现有工程危废临时贮存场所现场情况如下:

公司现有工程危险废物产生及贮存场所情况见下表。

表 2-11 现有工程危险废物汇总表

序号	危险废物 名称	危险废 物类别	危险废物代 码	产生量 (吨/ 年)	产生工序及装置	形态	主要成分	有害成分	产废周期	危险 特性	污染防治措 施
1	活性炭渣	其他废 物	HW49 900-039-49	8.78	脱色工序	固态	活性炭		30 天		交由具有资 质单位处理
2	废矿物油	废矿物 油与含 矿物油 废物	HW08 900-249-08	16.66	压缩机、风机	半液态	矿物油		10 天		交由具有资 质单位处理

表 2-12 现有工程危险废物贮存场所基本情况表

序号	贮存场所(设施) 名称	危险废物名称	危险废物 类别	危险废物代码	位置	占地面积	贮存方式	贮存能力	贮存周期
1		活性炭渣	其他废物	HW49 900-039-49	厂区东南角				
2	危废临时贮存间	废矿物油	废矿物油 与含矿物 油废物	HW08 900-249-08	污水处理站 旁	50m ²	临时堆存	60 吨	300 天

2.7.5 公司现有工程污染物排放情况汇总

公司现有工程污染物排放情况见下表。

表 2-13 公司现有工程污染物排放情况一览表

废水量	COD	NH ₃ -N	废气量	SO ₂	烟尘	NOx	VOCs	固废
172417m³/a	8.621t/a	0.8621t/a	/	/	/	/	1.766t/a	0t/a

2.8 在建工程情况

公司于 2019 年进行 6 万吨/年三氯氢硅及 5.2 万吨/年绿色硅烷项目,目前 6 万吨/年三氯氢硅的生产线正在建设中,本评价在此作为在建工程进行表述。

2.8.1 三氯氢硅生产工艺流程

2.8.2 在建工程污染物排放情况

在建工程中间品三氯氢硅的污染物排放情况依据《荆州市江汉精细化工有限公司 6万吨/年三氯氢硅及5.2万吨/年绿色硅烷项目环境影响报告书》内容,中间品三氯氢硅生产过程中不产生废水,外排废气主要为氢气,不产生总量控制污染物,因此在建工程建成后公司不增加总量控制污染物。

2.9 待建工程情况

公司于 2021 年进行功能性硅烷偶联剂及中间体建设项目,目前刚通过荆州市生态环境局的审批,即将进行建设,本评价在此作为待建工程进行表述。其内容依据《湖北江瀚新材料股份有限公司功能性硅烷偶联剂及中间体建设项目环境影响报告书》。

2.9.1 待建工程生产工艺流程及产污节点

2.9.2 待建工程环境保护措施

(1) 废水

废水主要为含硫硅烷蒸馏废水、盐酸吸收区产生的处理废水、喷淋装置区产生的尾气处理废水、洗桶区清洗废水、车间地面清洗废水、生活废水及初期雨水。项目废水拟依托公司现有污水处理站进行处理,污水处理站处理能力为

3750m³/d。污水处理站处理工艺为生产废水→格栅→调节均衡池→中和池→蒸汽加热池→UASB 厌氧反应器→初沉池→预曝池→生物接触氧化→二沉池→达标排放。目前公司现有工程需处理的废水量为 574.72m³/d,污水处理站仍有3175.28m³/d 的处理余量,本项目将新增废水 96.38m³/d,公司现有污水处理站完全有能力进行处理。

处理后废水污染物浓度满足 GB8978-1996《污水综合排放标准》表 4 三级标准要求和园区管网接管要求。公司废水处理达标后经污水管网排入荆州申联环境科技有限公司污水处理厂集中处理,最终排入长江(荆州城区段)。

(2) 废气

项目烷基硅烷系列产品、丙基硅烷系列产品、中间体氯丙基三乙氧基硅烷在酯化反应过程会产生 HCl。HCl 将在新建的盐酸吸收区进行处理,HCl 尾气经微负压抽至各个盐酸吸收区采用封闭式循环二级降膜吸收的处理工艺,盐酸储罐放空口尾气通过密闭管道连接至水冲真空泵吸收,水冲真空泵吸收产生的低浓度盐酸返回至盐酸降膜吸收塔循环使用,经多次循环吸收为 33%的盐酸后抽至盐酸储罐进行储存,其吸收处理效率为 99.99%,剩余尾气则通过碱液吸收塔处理,处理效率 90%,最终微量 HCl 尾气在 5#盐酸吸收区通过 15m 的排气筒 6#排放。

项目在冷凝回收物料时有少量不凝尾气,主要为甲醇、VOCs。尾气经各车间的喷淋吸收系统处理后,大部分尾气被带入废水,少量尾气通过各车间15m排气筒排放(排气筒编号为7#、8#、9#、10#)。

本项目新建的中间体及产品储罐区进料采用槽罐车运输罐的气相管道与原料储罐的气相管道相连接,运输罐的液相管道与原料储罐的液相管道相连接,槽罐车的物料通过磁力卸料泵输送至原料储罐。储罐区出料采用原料储罐的气相管道与计量罐的气相管道相连接,原料罐液相管道与计量罐液相管道相连接,储罐内的原料通过磁力输送泵输送至车间计量罐。储罐区进料和出料均采用了密闭内循环的方式,尽可能减少了储罐区大小呼吸废气的无组织排放。

本项目废水将依托公司现有工程污水处理站进行处理,污水处理站产生的 废气污染源主要为无组织排放的恶臭物质。公司将加强管理,并设置环境防护 距离加以控制。

(3) 噪声

项目对噪声通过采取减振、隔声等措施后,强噪声源可降噪 15~20dB(A),再经距离衰减后四向厂界噪声均达到贡献值均满足《声环境质量标准》(GB3096-2008)中的3类声环境功能区标准限值。

(4) 固体废物

项目产生的固体废弃物包括设备维修废油 S1、污水处理污泥 S2 和生活垃圾 S3。其中设备维修废油 S1 属于 HW08 类危险废物(900-249-08),污水处理污泥 S2 属于一般工业固废。

固体废物通过分类收集分类处置,生活垃圾交由园区环卫部门处置;危险废物废矿物油,厂区内收集暂存后交由有资质单位进行处置;污水处理污泥作为制砖建材或者进入生活垃圾填埋场进行填埋处理。各种固体废物均可得到妥善处置,不对外排放。

2.9.3 待建工程污染物排放情况

待建工程污染物排放情况列入下表。

表 2-14 公司待建工程污染物产生及排放情况汇总表

				主要污	染物(t/a)		- 处置措施及排
类别	排放源	排放量	污染物 名称	产生量	削减量	排放量	放去向
	6#排气筒	500m ³ /h	HCl	31610	31609.684	0.316	二级降膜吸收+ 碱液喷淋吸收
	7#排气筒	1250m ³ /h	甲醇	0.440	0.374	0.066	二级冷凝+喷淋
	/#汀州 (川)	1230111711	VOCs	1.370	1.164	0.206	吸收处理
	8#排气筒	7000m ³ /h	VOCs	2.000	1.700	0.300	二级冷凝+喷淋 吸收处理
废气	9#排气筒	1000m ³ /h	VOCs	0.840	0.714	0.126	二级冷凝+喷淋 吸收处理
	10#排气筒	1000m ³ /h	甲醇	0.750	0.637	0.113	二级冷凝+喷淋
	10#j-j- (jaj	1000111 /11	VOCs	1.470	1.249	0.221	吸收处理
	储罐区	/	VOCs	2.995	2.695	0.300	油气回收系统, 无组织排放
	污水处理	,	NH_3	0.040	0	0.040	加强管理,无组
	站	/	H ₂ S	0.003	0	0.003	织排放
废水	新增综合 废水	28913.98m³/a	COD	24.896	23.450	1.446	依托公司现有 污水处理站进

			BOD ₅	11.847	11.558	0.289	行处理,处理达 标后经开发区 污水管网排入
			SS	13.958	13.669	0.289	荆州申联环境 科技有限公司 污水处理厂集
			NH ₃ -N	0.187	0.042	0.145	中处理,最终排入长江(荆州城区段)
	危险废物	废矿物	加油	3.6	3.6	0	暂存后委托有 资质单位定期 处理
固体	一般工业废物	污水处理]污泥	6.5	6.5	0	作为制砖材料 或进入生活垃 圾场进行填埋 处理
	生活废物	生活垃	圾	17.25	17.25	0	环卫部门处理

2.10 公司污染物总量控制指标落实情况

根据荆州市生态环境局2020年9月23日对荆州市江汉精细化工有限公司出具的排污许可证(914210007070225296001P)。公司污染物污染物许可年排放限值为COD 18.141t/a,NH₃-N 1.511t/a。

根据《湖北江瀚新材料股份有限公司功能性硅烷偶联剂及中间体建设项目环境影响报告书》,待建工程完成后全公司的总量控制污染物排放情况为COD 10.067t/a, NH₃-N 1.005t/a, 污染物排放满足公司总量控制指标要求。

2.11 存在的环境保护问题

根据现场调查、《荆州市江汉精细化工有限公司年产6万吨/年三氯氢硅及5.2万吨/年绿色硅烷项目竣工环境保护验收监测报告》以及荆州市江汉精细化工有限公司2020年的委托性监测报告,公司现有工程环保设施齐全。

公司废水采用生产废水→格栅→调节均衡池→中和池→蒸汽加热池 →UASB 厌氧反应器→初沉池→预曝池→生物接触氧化→二沉池→达标排放的 处理工艺,处理能力为 3750m³/d,经监测公司废水总排口的污染物浓度满足《污水综合排放标准》(GB8978-1996)表 4 三级标准要求限值要求和荆州申联环境 科技有限公司污水处理厂进水水质要求。

公司 HCl 尾气采用二级降膜吸收+碱液喷淋吸收,可有效减少 HCl 的排放,工艺尾气采用二级冷凝回收+喷淋吸收,可有效减少 VOCs 的排放,符合相关治

理措施要求。经监测公司厂界无组织排放废气中氯化氢、甲醇、非甲烷总烃浓度均满足《大气污染物综合排放标准》(GB16297-1996)表 2 无组织排放监控浓度限值要求。

公司噪声污染源采用建筑隔声、消声器、减震等措施进行治理。同时修建隔声间,对车间墙壁、门窗进封闭、修建绿化隔离带等措施进行治理。经监测公司厂界噪声监测点昼、夜间监测值均满足《工业企业厂界环境噪声排放标准》(GB 12348-2008)3 类标准限值的要求。

公司固体废物分类处理,污水厂污泥储存在专用仓库待集中送生活垃圾填埋场进行填埋;石灰渣作为建筑材料外售;生活垃圾由环卫部门集中清运。废活性炭渣和废矿物油送入危废暂存间暂存后分别交由北控城市环境资源(宜昌)有限公司和荆州市昌盛环保工程有限公司进行处理处置。公司固体废物的处理处置符合《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2020)及其修改单和《危险废物贮存污染控制标准》(GB18597-2001)及其修改单的要求。

由于目前公司废气均为无组织排放,根据生态环境部关于印发《重点行业挥发性有机物综合治理方案》的通知(环大气〔2019〕53 号)中第三条第二款全面加强无组织排放控制中遵循"应收尽收、分质收集"的原则,科学设计废气收集系统,将无组织排放转变为有组织排放进行控制。由此可见,公司废气采用无组织排放已不能满足国家关于大气污染防控的要求。公司待建工程的废气将采用有组织的形式排放,并逐步将公司厂区现有的无组织排放源改为有组织排放。

综上分析,公司目前不存在环境保护问题。

3 建设项目概况

3.1 基本情况

项目名称: 年产 2000 吨气凝胶复合材料产业化建设项目

单位名称: 湖北江瀚新材料股份有限公司

项目性质: 扩建

建设地点:湖北省荆州市沙市区经济技术开发区群力大道 36号

占地面积: 117440.3 平方米

总投资: 25000 万元

生产规模: 年产气凝胶复合材料 2000 吨

3.2 项目组成

3.2.1 项目主要建构筑物

本项目将公司厂区外东北处新征用地建设生产车间及配套设施,项目建构 筑物见表 3-1。

表 3-1 项目新增主要建构筑物及设施一览表

序号	名称	层数	基底面积(m²)	建筑面积(m²)
1	1#车间(甲类)	4 层	1248	3072
2	2#车间(甲类)	4 层	1248	3072
3	3#车间(甲类)	4 层	1248	3072
4	4#车间(甲类)	4 层	1248	3072
5	5#车间(甲类)	4 层	1248	3072
6	6#车间(甲类)	4 层	1248	3072
7	7#车间(甲类)	4 层	1248	3072
8	8#车间(甲类)	4 层	1248	3072
9	9#车间(甲类)	4 层	1248	3072
10	1#储罐区(甲类)	/	2162	/
11	2#储罐区(甲类)	/	2162	/
12	3#储罐区(丙类)	/	1250	/
13	1#仓库(丙类)	1 层	3270	3270
14	2#仓库(丙类)	1 层	3270	3270
15	装卸栈台	/	800	/
16	控制室	1层	828	828
17	质检分析楼	4 层	1040	4160
18	环保处理设施	/	1200	/
19	设备维修间	1层	1200	1200

20	冷冻站、循环水站	1层	1560	1560
21	配电房、空氮站	2 层	1560	3120
22	门房	1层	70	70

3.2.2 项目主要建设内容

主要建设内容详见表 3-2。

表 3-2 项目建设内容一览表

类别	名称	建设内容
	1#车间(甲类)	占地面积 1248m²,建筑面积 3072m²,钢框架结构,4层,设置超高纯 6N 级石英砂生产线1条,产能为 1000t/a。(为同期建设项目,本报告不评价)
	2#车间(甲类)	占地面积 1248m²,建筑面积 3072m²,钢框架结构,4层,设置超高纯 6N 级石英砂生产线1条,产能为1000t/a。(为同期建设项目,本报告不评价)
	3#车间(甲类)	占地面积 1248m²,建筑面积 3072m²,钢框架结构,4层,设置超高纯 6N 级石英砂包装生产线1条。(为同期建设项目,本报告不评价)
主体	4#车间(甲类)	占地面积 1248m²,建筑面积 3072m²,钢框架结构,4层,设置 气凝胶材料生产线1条,产能为 1000t/a。
工程	5#车间(甲类)	占地面积 1248m²,建筑面积 3072m²,钢框架结构,4层,设置 气凝胶材料生产线1条,产能为 1000t/a。
	6#车间(甲类)	占地面积 1248m²,建筑面积 3072m²,钢框架结构,4层,设置气凝胶材料生产线包装1条。
	7#车间(甲类)	占地面积 1248m ² , 建筑面积 3072m ² , 钢框架结构, 4 层, 作为 备用车间。
	8#车间(甲类)	占地面积 1248m ² , 建筑面积 3072m ² , 钢框架结构, 4 层, 作为 备用车间。
	9#车间(甲类)	占地面积 1248m ² , 建筑面积 3072m ² , 钢框架结构, 4 层, 作为 备用车间。
	控制室	占地 828m², 建筑面积 828m², 砖混结构, 1 层。
辅助	质检分析楼	占地 1040m², 建筑面积 4160m², 钢筋混凝土框架结构, 4 层。
工程	设备维修间	占地 1200m², 建筑面积 1200m², 砖混结构, 1 层。
	门卫	占地 70m ² , 建筑面积 70m ² , 砖混结构, 1 层。
	1#储罐区(甲 类)	占地面积 2162m²,钢筋混凝土设备基础及围堰,本项目使用。
	2#储罐区(甲 类)	占地面积 2162m², 钢筋混凝土设备基础及围堰,备用罐区。
储运 工程	3#储罐区(丙 类)	占地面积 1250m², 钢筋混凝土设备基础及围堰, 备用罐区。
	1#仓库(丙类)	占地面积 3270m ² , 建筑面积 3270m ² , 钢框架结构, 1 层, 作为原料仓库。
	2#仓库(丙类)	占地面积 3270m², 建筑面积 3270m², 钢框架结构, 1 层, 作为产品仓库。
公用 工程	给水	厂区内用水源来自园区供水管网,引入厂区供水管道可满足用水需求。厂内供水采用生产、生活供水系统、消防供水系统。生产、生活及消防供水在厂区内形成供水管网。车间内生产、生活及消

		防用水压力 0.3MPa, 温度 22℃, 生活给水水压 0.25MPa。					
	排水	厂区设有雨、污分流的排水系统。厂区雨水 DN800,排入园区市政雨水收集管网;污水通过管道送至公司现有的污水处理站进行处理,处理达标后,统一排入荆州申联环境科技有限公司污水处理厂。					
	供电	配电房1个,供电由荆州市电力局供给。					
	供热使用国电长源蒸汽为热能。						
	供风、供氮 空氮站 1 间,为项目提供压手空气和氮气。						
	制冷	冷冻站 1 间,低温冷冻机组 300KW 的 2 台。					
	循环水池	容积 1170m³,钢筋砼结构,地下。					
环保 工程	废气	工艺尾气采用二级冷凝回收装置(一级水冷、二级-25℃冷冻盐水冷却),冷凝处理效率 98%,冷凝回收的液体原料,返回车间作原材料使用。冷凝回收后尾气经各车间的喷淋吸收系统处理后,大部分尾气被带入废水,少量尾气通过各车间 20m 排气筒排放。 储罐的无组织废气通过采用氮封,并对相关储罐进行适时降温、采用内浮顶等措施降低无组织逸散量。					
上作	废水	污水通过管道送至公司现有的污水处理站进行处理,公司现有的污水处理站处理规模 3750m³/d, 处理工艺为污水收集池→中和池→中和沉淀池→UASB 厌氧反应器→初沉池→预曝池→生物接触氧化→二沉池。					
	固废	依托公司现有的 50m²危险废物暂存间,收集暂存危险废物,定期交由有相应危险废物资质单位处置。					
环境 风险	初期雨水及事 故水池	容积 1785m³, 钢筋砼结构, 地下。					

3.3 建设地点

项目将在湖北江瀚新材料股份有限公司(原荆州市江汉精细化工有限公司) 现有厂区外东北部新征用地进行建设,该地块东临规划的中心路,西临深圳大 道,北面临规划的锣场路,南面临东家庄路。

3.4 原辅材料

3.4.1 项目主要原辅材料消耗情况

3.4.2 原料与《国家鼓励的有毒有害原料(产品)替代品目录(2016年版)》符合性

工业和信息化部、科学技术部及环境保护部于 2016 年 12 月 14 日联合发布了《国家鼓励的有毒有害原料(产品)替代品目录(2016 年版)》,经查对,该项目原辅材料及主要产品、副产品均不涉及《国家鼓励的有毒有害原料(产

品)替代品目录(2016年版)》中的"被替代品",基本符合该目录相关要求。

3.4.3 项目主要能源消耗情况

项目能耗情况列入下表:

表 3-3 项目能耗定额一览表

序号	能源	规格	年用量	来源
1	水		0.6373 万吨	自来水公司
2	蒸汽	0.7Mpa, 170°C	0.864 万吨	荆州热电厂
3	电	380/220V	414.82 万 kw	国家电网

3.4.4 项目物料贮存方式

(3) 物料贮存方式合理性分析

该项目在设计阶段即考虑优化物料贮存方式,根据厂内物料的特性和存放 要求、贮存期的长短以及当地气象条件、生产技术要求进行选择,2#储罐区为 甲类储罐区,原料仓库为丙类仓库。

综上所述, 该项目物料贮存方式基本合理。

(4) 物料运输

根据货物性质、流向、年运输量,该项目原料、成品运输主要以公路为主,且主要依靠社会运输力量解决。其中危险化学品均由专用运输车辆进行运输,由具有危险化学品准运证的运输企业运输。危险化学品的运输按《危险货物运输包装通用技术条件》(GB12463-2009)进行,做到定车、定人,所定人员须经过危险品运输安全专业培训,通过考核后上岗;所用车辆须经相关部门审核后执证营运。

(5) 原辅材料装卸及投料方式

项目液态物料进料采用槽罐车运输罐的气相管道与原料储罐的气相管道相连接,运输罐的液相管道与原料储罐的液相管道相连接,槽罐车的物料通过磁力卸料泵输送至原料储罐。液态物料出料采用原料储罐的气相管道与计量罐的气相管道相连接,原料罐液相管道与储罐液相管道相连接,储罐内的原料通过磁力输送泵输送至车间计量罐。液态物料进料和出料均采用了密闭内循环的方式。

3.4.5 项目主要化学品理化性质及毒理性质

3.5 主要生产设备

本项目设备情况见下表。

表 3-4 项目生产设备一览表

序号	设备名称	型号	数量	单位
1	二级反渗透设备	2t/h,出水电导 率 ≤2us/cm	1	套
2	溶剂不锈钢储罐	220m³	4	台
3	搪瓷反应釜	30m³	4	套
4	催化剂不锈钢储罐	20m³	3	台
5	过滤系统	定制	3	套
6	收放卷设备	定制	3	套
7	固化设备	定制	3	套
8	浸胶架	定制	18	台
9	不锈钢洗涤罐	5m³	6	台
10	洗涤液配制罐	120m³	5	台
11	不锈钢废液罐	400m³	6	台
12	干燥设备	定制	3	套
13	洗涤塔	定制	1	台
14	精馏塔		4	台
15	水接收罐		2	台
16	烷烃接收罐		2	台
17	泵		3	套
18	风机		1	套
19	回收液储罐		6	台

3.6 产品方案及产品质量标准

3.6.1 产品方案

本项目产品情况详细见下表。

表 3-5 产品方案一览表

序 号	产品名称	单位	产量	规格	运输 方式	包装 方式	储存 方式	备注
一、 三	一、主要产品							
1	气凝胶复合 材料	吨/年	厚度分 2000 6mm、 10mm		汽运	袋装	密封	外售

_,	副产品						
2	乙醇	吨/年	9767.7	管道	储罐	密封	自用

本项目生产的气凝胶复合材料是将纳米气凝胶与无机纤维结合在一起,专用于高温各类工业管道、罐体及其他弧面设备的保温隔热。是客户追求的隔热效果及能耗的理想选择。

3.6.2 产品质量标准

本项目产品质量标准情况详细见下表。

表 3-6 项目产品质量标准一览表

项目	指标
产品导热系数	≤0.023 W/(m·K), 25°C
燃烧性能等级	A
抗拉强度	≥200 KPa
质量吸湿率	≤5.0%
体积系数率	≤1.0%
憎水率	≥98.0%
振动质量损失率	≤1.0%
压缩回弹率	≥90%
体积密度	实测体积密度与标称体积密度的偏差不大于 20%
加热永久线变化	≥-2.0%
执行标准	GB/T 34336-2017

本项目副产品质量标准情况详细见下表。

表 3-7 项目副产品质量标准一览表

化学名称	CAS NO	分子式	分子 量	沸点	密度 g/cm³	质量含 量	标准号
乙醇	64-17-5	C ₂ H ₆ O	46.07	78.3℃	0.79	≥90%	GB T 394.1-2008

3.7 厂区平面布置

3.7.1 平面布置

本项目建设地点为荆州市沙市化工园,本项目项目总占地面积为117440.3m²,总建筑面积为19818m²。结合荆州市沙市化工园现状和建设用地条件,整个开发区布置紧凑,整齐协调,符合相关规划的设计要求。在厂区西侧和南侧分别设置出入口进行人车分流,车辆从西侧出入口进出,人员从南侧出入口进出。厂区通过道路连接,均紧靠公路,交通运输方便。同时设计环型道

路,满足生产运输及消防使用要求。

3.7.2 竖向布置

本项目结合周围城市道路标高和场地现状地形进行场地竖向设计,使场地 既满足研发、办公、交通、景观、消防等要求,也满足建、构筑物基础和管线 埋设深度的要求;设计还应保证场地不受洪水威胁,使雨水能够迅速顺利排除; 保证开发区内外出入口,交通线路有合理的衔接。竖向布置主要有平坡式、阶 梯式和混合式三种。本项目地块地势平坦,高程变化不大,场地竖向布置采取 平坡式。

3.7.3 厂区绿化

厂区绿化应结合防尘、减噪、美化环境等功能进行。本项目拟根据各厂区的功能、性质、安全性等全面考虑分别进行必要的绿化布置。同时,将厂区围墙外,本项目用地红线内的区域进行充分的绿化,既提高整个用地范围内的绿化率,也达到不致影响安全的目的。

3.7.4 道路

厂区道路为城市型水泥混凝土路面。道路和四周环形通道主要为 4-8 米。道路转弯半径为 4-6 米,车间引道转弯半径为 6 米,主要道路满足车辆运输要求。厂区建筑两边设有消防车道,车道宽 6 米及以上,路面内缘转弯半径大于 12 米,路面净空高度不低于 5 米,消防车道离建筑大于 5 米,消防车道尽端设有消防回车场地。

3.7.5 围墙和大门

项目需建设围墙和大门,大门建设于地块南侧,围墙采用砖混结构,并用绿化装饰墙面。大门采用伸缩性推拉门,便于车辆和人流的进入。

3.7.6 厂区平面布置分析结论

厂区的环境设计在满足生产加工的基础上,力求生产环境生活化,正确处理好人与建筑物的审美关系,并在整体上与周边环境相协调。设计拟通过厂区内绿化、建筑物色彩体现企业形象,厂区与道路之间加隔绿化带,体现以人为本人、人与自然和谐相处的建筑风格。综上所述,本项目总平面布置分区明确、

人货分流、满足工艺流程顺畅和原辅料、产品等的运输方便要求,产生的污染物对周围环境敏感点无明显影响,厂区平面布置合理可行。

项目从厂址及总体布置安全检查结果可见,厂址选择符合符合《化工企业总图运输设计规范》GB50489-2009、《建筑设计防火规范》GB50016-2014以及《石油化工企业设计防火规范》GB50160-2008等标准规范的规定。

3.8 公用工程

3.8.1 给水

项目用水主要由荆州市自来水公司现有供水管网提供,供水能力 100m³/h。 建立冷却水循环水池,冷却水全部循环利用。

3.8.2 排水

采用雨污分流体制,雨水采用排水管道收集,就近排入厂区雨水排水管网,通过厂区东边、南边、北边雨水排口,最后排入园区的雨水排水管网。生产废水和生活废水依托公司现有厂区的污水处理站,处理达标后经园区污水管网排入荆州申联环境科技有限公司污水处理厂,最终排入长江(荆州段)。

3.8.3 供热

项目蒸汽需求量约 1.2 吨/小时,蒸汽压力要求为 0.5MPa,蒸汽来源国电长源荆州热电厂,蒸汽温度 200℃、压力 0.7MPa。

3.8.4 供电

项目电力由沙市经济开发区市政供电公司提供。电量供应充足、可靠,能够满足项目产业化要求。

3.9 建设项目与现有工程依托关系

项目将在湖北江瀚新材料股份有限公司(原荆州市江汉精细化工有限公司) 现有厂区外东北部新征用地进行建设,将新建生产车间、辅助工程、储运工程、 公用工程和部分环保工程。主要依托公司现有工程污水处理站和危险废物暂存 间环保工程。

3.10 运行时间与劳动定员

本项目主要生产装置采用连续操作,年工作日 300 天,每班 8 小时,三班 66 湖北荆州环境保护科学技术有限公司 三运转制运作, 年操作 7200 小时, 间歇操作, 管理人员为白班。

本项目新增定员 34 人,生产人员上岗前,通常需要进行本装置生产知识和操作技能的培训,一般需要进行三个月的实地操作培训,掌握产品生产要领和紧急事故的处理能力,培训考试合格后方能上岗工作。

3.11 建设周期

项目建设总周期分为设计、采购、土建、安装和试车投产等五个阶段。考虑到市场以及产品之间的衔接,规划完成整个项目建设总周期为一年。本项目申报获得批复后,立即着手项目的工程设计工作,设计、采购、土建和安装工作交叉进行,并进行有效的协调,以期尽快进入试车投产。预计于 2021 年 7 月开工建设,2022 年年中建成投入运行。

3.12 总投资与环境保护投资

项目总投资为 25000 万元, 其中环保设施投入约为 160 万元, 占工程建设投资 0.64%。

4 建设项目工程分析

4.1 生产工艺及产排污节点分析

4.2 公辅工程生产工艺及产、排情况

4.2.1.1 施工期产污分析

施工期产污分析见下表。

产污环节说明 工程内容 污染类型 主要污染因子 SS、石油类 废水 来自地坑渗水、地表径流、机械维修等 噪声 挖土机、推土机、铲运机噪声 LAeq 来自临时堆场、土方开挖 基础工程 扬尘 废气 车辆发动机运行 SO₂、NO₂等 固体废物 来自地基开挖 弃土等 混凝土浆水 SS 废水 噪声 各种焊机、除锈机、切割机等噪声 LAeq 焊接烟尘 烟尘 主体工程 废气 除锈打磨 粉尘 金属边角料、焊接残渣、 固体废物 下料、焊接、打磨等 废弃砂盘、模板等 地面清洗、砂浆等 废水 SS 运输车辆、钢筋钢板装卸、起重动力装 噪声 LAeq 置、浇注机、空压机(喷涂用)等 装饰工程及 装饰工程 粉尘、TVOC等 设备安装 废气 物料、弃渣临时堆放 扬尘 固体废物 金属丝、废弃钢筋混凝土、砖石等 建筑垃圾 COD、BOD5、SS、NH3-N 施工人员日 废水 生活污水 、动植物油等 常生活活动 固体废物 生活垃圾 生活垃圾

表 4-1 工程施工期产污分析表

4.2.1.2 营运期产污分析

根据项目生产过程中产污节点分析,项目生产过程中会产生废气、废水、固废、噪声,各污染物产生具体情况如下:

(1) 废气污染物

项目主要废气污染源为以下几种:

项目在水解、基材喷涂、超临界干燥、母液精馏的过程中会产生工艺废气, 主要污染物为乙醇和氯化氢。本项目采用一级中冷+二级深冷,回收低沸物后的 不凝性尾气经引风机直接排入洗涤塔,进行喷淋洗涤,最后通过20m的排气筒排 放。

储罐区进料采用槽罐车运输罐的气相管道与原料储罐的气相管道相连接, 运输罐的液相管道与原料储罐的液相管道相连接,槽罐车的物料通过磁力卸料 泵输送至原料储罐。储罐区出料采用原料储罐的气相管道与计量罐的气相管道 相连接,原料罐液相管道与储罐液相管道相连接,储罐内的原料通过磁力输送 泵输送至车间计量罐。储罐区进料和出料均采用了密闭内循环的方式,储罐区 仅少量大小呼吸废气以无组织的形式排放。

(2) 废水污染物

项目主要废水污染源为工艺废水、循环冷却水排污水、喷淋装置产生的尾气处理废水、车间地面清洗废水及生活废水。

(3) 固体废物

项目生产工艺产生的固体废物公辅工程及环保工程产生的固体废物为设备维修废机油、生活垃圾和废水处理污泥。

(4) 噪声

项目生产过程中的噪声主要是各类设备产生的噪声,主要为各类泵机、空压机及冷冻机。

4.3 相关平衡

4.4 污染源源强

4.4.1 施工期主要污染源强分析

4.4.1.1 施工期废气

施工阶段空气污染主要来自施工车辆行驶扬尘、堆场扬尘和搅拌扬尘等。

①车辆行驶扬尘

根据有关文献资料介绍,施工过程中,车辆行驶产生的扬尘占总扬尘的60%

以上。车辆行驶产生的扬尘,在完全干燥的情况下,可按以下经验公式计算:

$$Q = 0.123 \left(\frac{V}{5} \right) \left(\frac{W}{6.8} \right)^{0.85} \left(\frac{P}{0.5} \right)^{0.75}$$

式中: Q——汽车行驶的扬尘, kg/km·辆;

V——汽车行驶速度, km/h;

W——汽车载重量, t;

P——道路表面粉尘量, kg/m²。

汽车产生的道路扬尘与车速、车型、车流量、风速、道路表面积尘量等多种因素有关。下表为一辆10t卡车通过一段长度为1km的路面时,不同路面清洁程度、不同行驶速度条件下,产生的扬尘量。由下表可见,在同样路面清洁程度条件下,车速越快,扬尘量越大;在同样车速条件下,路面尘土量越大,扬尘越大。因此,限制施工车辆速度和保持路面清洁是减小扬尘的有效手段。

粉尘量车速 0.1kg/m^2 0.3kg/m^2 0.4kg/m² 0.2kg/m² 0.5kg/m^2 1.0kg/m^2 5 km/h 0.0511 0.0859 0.1164 0.1444 0.1707 0.2871 10 km/h 0.1021 0.1717 0.2328 0.2888 0.3414 0.5742 15 km/h 0.1532 0.2576 0.3491 0.4332 0.5121 0.8613 25 km/h 0.2553 0.4293 0.5819 0.7220 0.8536 1.4355

表 4-2 不同车速和路面清洁程度条件下的汽车扬尘(单位: kg/辆·km)

根据有关试验的结果,如果施工阶段对汽车行驶路面勤洒水(4~5次/天),可以使扬尘产生量减少70%左右,收到很好的降尘效果。

②堆场扬尘

施工阶段扬尘的另一个主要来源是露天堆场和裸露场地的风力扬尘。由于施工需要,一些建筑材料和开挖的土方需临时堆放,在气候干燥及有风的情况下,会产生扬尘,其扬尘量可按堆场起尘的经验公式计算:

$$Q = 2.1(V_{50} - V_0)^3 e^{-1.023w}$$

式中: Q——起尘量, kg/t·a;

V₅₀——距地面50m 风速, m/s;

 V_0 ——起尘风速,m/s;

W——尘粒的含水率,%。

起尘风速与粒径和含水率有关,因此减小露天堆场和保证一定的含水率及减少裸露地面是减少风力起尘的有效手段。粉尘在空气中的扩散稀散与风速等气象条件有关,也与粉尘的沉降速度有关。不同粒径的沉降速度见下表。从表中可知,粉尘的沉降速度随着粒径的增大而迅速增大,当粒径大于250µm时,主要影响范围在扬尘产生点下风向近距离范围内,而对外环境影响较大的是一些粒径微小的粉尘。

粉尘粒径(μm)	10	20	30	40	50	60	70
沉降速度(m/s)	0.003	0.012	0.027	0.048	0.075	0.108	0.147
粉尘粒径(μm)	80	90	100	150	200	250	350
沉降速度(m/s)	0.158	0.170	0.182	0.239	0.804	1.005	1.829

表 4-3 不同粒径尘粒的沉降速度

根据有关资料的初步估算,弃土堆场的扬尘在下风向100~150m范围内超过 GB3095-2012中的二级标准。

③搅拌扬尘

根据施工灰土搅拌现场的扬尘监测资料作类比分析,灰土拌和站附近,下风向5m处TSP小时浓度8.10mg/m³;相距100m处TSP小时浓度为1.65mg/m³;相距150m已基本无影响。

④车辆废气

施工机械、施工车辆运行过程中产生大量含 NOx、CO 废气。

4.4.1.2 施工期废水

(1) 生产废水

项目施工生产废水高峰期排放量约15.0m³/d,主要包括基坑排水、砂石料加工系统冲洗水,混凝土加工系统冲洗废水及施工械机设备冲洗废水等,废水中主要污染物为悬浮物(SS)。项目基坑最大排水量约8.0m³/d,砂石料冲洗最大排水量约为4.0m³/d,均经格栅和沉淀处理达标后回用、喷洒降尘或周边植被绿化用水;混凝土加工系统冲洗废水最大排放量约2.0m³/d,经统一收集后,采取中和、沉淀等措施处理达标后,可回用或喷洒降尘或周边植被绿化用水;机械维修冲洗废水产生量约2.0m³/d,经沉淀和油水分离处理达标后回用或作道路浇洒用水。

(2) 生活污水

施工人员生活污水产生量为 0.10m^3 /人·d,预计每天施工人数平均为50人,则施工期间产生的生活污水量约为 5m^3 /d,施工期为12个月,则施工期间生活污水排放总量可达1500t。生活污水浓度按COD 350mg/L、BOD₅ 200mg/L、SS 220mg/L计算。污染物产生量为COD 0.525t/a,BOD₅ 0.300t/a,SS 0.330t/a。

施工人员租用项目周边居民房,不设施工营地,施工人员生活污水依托当地已有的生活设施(如化粪池)处理后,用于农用施肥。

(3) 雨水

施工期由于施工扰动,导致雨季雨水中 SS 含量增加,通过在各个工程区修 建临时排水沟和临时沉砂池对雨水进行沉淀,沉淀后可外排。外排雨水对周边 水体的水质影响较小。

4.4.1.3 施工期噪声

施工期噪声源主要是各种施工机械和车辆,包括挖掘机、打桩机、搅拌机等。

施工过程主要有挖土石方、打桩、结构、装修等阶段。

施工过程的噪声源有挖掘机、运输车辆、吊管机、混凝土搅拌机、翻斗车、震捣棒、电焊机和推土机等。各施工机械的主要噪声源及源强见下表。

施工阶段	主要噪声源名称	测点与机械距离(m)	声压级 dB(A)	排放特征					
	装载机	5	90						
土地平整	推土机	5	86	间断					
	压路机	5	86						
	静压桩机	1	80						
地基处理	混凝土搅拌机	1	80	间断					
	发电机组	1	95						
本 /****	混凝土搅拌机	1	80	나의 생녀					
墙体施工	振捣机	1	90	间断					
设备安装	切割机	1	95	间断					

表 4-4 主要施工机械噪声值 单位: dB(A)

电焊机	1	85	
-----	---	----	--

4.4.1.4 施工期固体废物

(1) 建筑垃圾

施工垃圾来自施工废弃物,如废钢筋、包装袋、建筑边角料、废砖等,施工建筑垃圾产生系数为20~50kg/m²,本工程取30kg/m²,项目建构筑物计容建筑面积约14752.58m²,施工建筑垃圾产生量约442.58t。其中可回收利用的应尽量回收,不能利用的由施工单位运往当地城建部门指定地点场所统一处置。

(2) 生活垃圾

生活垃圾按平均每天施工人数50人,每人每天排放生活垃圾按1.0kg计算,则生活垃圾每天产生量为0.05t,施工期按12个月(300天)计,则施工期生活垃圾产生量为15t。施工人员租用当地居民房,其生活垃圾依托周边居民现有的生活垃圾处理措施,采取集中收集后,由环卫部门统一处理。

(3) 工程取弃土

项目场址已基本平整,不存在挖方及填方,项目无弃土产生。

4.4.2 运营期主要污染源强分析

4.4.2.1 废气污染源分析

项目主要废气污染源为工艺尾气和储罐区大小呼吸。

(1) 工艺尾气

项目在水解、基材喷涂、超临界干燥、母液精馏的过程中会产生工艺废气,主要污染物为乙醇(以 VOCs 进行评价)和氯化氢。根据物料平衡分析,工艺尾气中 VOCs 产生量约为 98.0t/a,HCl 产生量约为 2.0t/a,本项目采用一级中冷+二级深冷,回收低沸物,其乙醇回收效率约为 95%,不凝尾气抽至喷淋塔吸收处理,喷淋处理效率 85%,尾气喷淋吸收处理后,大部分尾气被带入废水,少量尾气在经 20m 的排气筒 3#排放。

工艺尾气产排情况列如下表。

表 4-5 工艺尾气产排情况

污染源	排放量	污染物 名称	产生浓 度 (mg/m³)	产生量 (t/a)	排放浓 度 (mg/m³)	排放量 (t/a)	排放速 率(kg/h)	处理措施
-----	-----	-----------	---------------------	--------------	---------------------	--------------	----------------	------

4#车间	5000m ³ /	VOCs	2722	98.0	20.4	0.735	0.102	二级冷凝+喷淋吸 收塔,经20m排气
5#车间	h	HCl	55.6	2.0	8.4	0.300	0.042	筒 3#排放

(2) 储罐区无组织排放废气

本项目新厂区将新建 3 座储罐区,其中 2#储罐区作为本项目的液态物料储存罐区。储罐区无组织排放主要形成的原因是由于物料转运过程中的"大呼吸"损耗和由外界气温条件变化所导致的"小呼吸"损耗。

"大呼吸"损耗(工作损耗):液体物料进罐时,会有一定量的气体排出而损耗,损耗根据流体密度、温度、压力、流速等操作参数的不同而不同,各种物质的损耗系数亦不同。当储罐进料作业时,液面不断升高,气体空间不断缩小,液体混合物被压缩而使压力不断升高,这种蒸发损耗称为"大呼吸"。当储罐进行排液作业时,液面下降,罐内气体空间压强下降。当压力下降到真空阀的规定值时,真空阀打开,罐外空气被吸入,管内液体蒸汽浓度大大降低,从而促使液面蒸发。当排液停止时,随着蒸发的进行,罐内压力又逐渐升高,不久又出现物料呼出的现象,称为"回逆苛刻",也就是"大呼吸"损耗的一部分。

"小呼吸"损耗:液体储罐静贮时,白天受热,罐内温度升高,物料蒸发速度较快,蒸汽压随之增高,当储罐内混合气体压力增加到储罐控制压力极限时,就要向外放出气体;相反,夜间气温降低时,储罐中的混合蒸气体积收缩,气体压力降低,当压力降低到呼吸阀的负压极限时,储罐又要吸进空气,加速物料的蒸发。由于外界大气温度昼夜变化而引起的损耗,称为储罐的"小呼吸"损耗。小呼吸蒸发损失量和储罐储存液位高度、罐容量、储罐允许承受的蒸汽压力及温度的变化有着密切关系。

大呼吸损失

大呼吸排放是由于人为的装料与卸料而产生的损失。因装料的结果,罐内压力超过释放压力时,蒸气从罐内压出;而卸料损失发生于液面排出,空气被抽入罐体内,因空气变成有机蒸气饱和的气体而膨胀,因而超过蒸气空间容纳的能力。

大呼吸排放公式:

$$L_{w} = 4.188 \bullet 10^{-7} \bullet M \bullet P \bullet K_{N} \bullet K_{C} \bullet \eta_{1} \bullet \eta_{2}$$

式中: Lw——固定顶罐的工作损失(kg/m³投入量);

 K_N ——周转因子(无量纲),取值按年周转次数(K)确定。K<=36, $K_N=1$; 36<K<=220, $K_N=11.467*K-0.7026; K<math>>$ 220, $K_N=0.26$

M——储罐内蒸气的分子量;

P——在大量液体状态下,真实的蒸气压力(Pa):

Kc——产品因子(有机液体取 1.0);

η1——内浮顶储罐取 0.05, 拱顶罐 1;

n2——设置呼吸阀取 0.7, 不设呼吸阀取 1。

小呼吸损失

小呼吸排放是由于温度和大气压力的变化引起蒸气的膨胀和收缩而产生的 蒸气排出,它出现在罐内液面无任何变化的情况,是非人为的自然排放方式。

储罐小呼吸排放量按美国《工业污染源调查与研究》第二辑计算,公式如下:

$$L_{B} = 0.191 \bullet M \bullet \left(\frac{P}{100910 - P}\right)^{0.68} \bullet D^{1.73} \bullet H0.51 \bullet \Delta T^{0.45} \bullet F_{P} \bullet C \bullet K_{C} \bullet \eta_{1} \bullet \eta_{2}$$

式中: L_B——储罐的呼吸排放量(kg/a);

D---罐的直径(m);

H——平均蒸气空间高度(m);

 \triangle T—— 一天之内的平均温度差 (ℂ);

 F_P ——涂层因子(无量纲),根据油漆状况取值在 $1\sim1.5$ 之间:

C——用于小直径罐的调节因子(无量纲);对于直径在 $0\sim9m$ 之间的罐体,C=1- $0.0123*(D-9)^2$;罐径大于 9m 的 C=1;

 K_C ——产品因子(石油原油 K_C 取 0.65, 其他的有机液体取 1.0);

η1——内浮顶储罐取 0.05, 拱顶罐 1;

η2——设置呼吸阀取 0.7, 不设置呼吸阀取 1。

本项目新建的中间体及产品储罐区进料采用槽罐车运输罐的气相管道与原料储罐的气相管道相连接,运输罐的液相管道与原料储罐的液相管道相连接, 槽罐车的物料通过磁力卸料泵输送至原料储罐。储罐区出料采用原料储罐的气相管道与计量罐的气相管道相连接, 原料罐液相管道与储罐液相管道相连接, 储罐内的原料通过磁力输送泵输送至车间计量罐。储罐区进料和出料均采用了

密闭内循环的方式,尽可能减少废气的无组织排放,通过计算,本项目储罐大小呼吸损失量见下表。

表 4-6 储罐区无组织废气排放情况一览表

来源	污染物	产生量 t/a	处理措施	排放量 t/a	排放方式	排放面源 m ²
2#储罐	VOCs	1.110	油气回收系统	0.111	无组织排 放	2162

废气汇总情况列入下表。

表 4-7 本项目废气污染物汇总表

						主要污	杂物产生及排	非放情况					
排放	废气量	 来源	排放位置及	污染物	处理	里前		处理后					
类型	m³/h		面积	17条10	产生量	产生浓度	排放量	排放浓度	排放速率	<u> </u>			
					t/a	mg/m³	t/a	mg/m³	Kg/h				
有组				VOCs	98.0	2722	0.735	20.4	0.102	 二级冷凝+喷淋吸收			
织排	5000	工艺尾气	3#排气筒										
放							HC1	2.0	55.6	0.300	8.4	0.042	塔
无组													
织排		2#储罐区	面源 2162m ²	VOCs	1.110		0.111		0.015	油气回收系统			
放													

4.4.2.2 废水污染源分析

根据工程工艺分析,本项目正常工况产生的废水主要有工艺废水、循环冷却水排污水、喷淋装置区产生的尾气处理废水、车间地面清洗废水和生活废水。

(1) 工艺废水

根据物料平衡和水平衡分析,气凝胶复合材料使用高纯水进行配酸,在后续的生产工序中间产生废水 $3300 \text{m}^3/\text{a}$,进入公司现有厂区的污水处理站处理。 废水中各污染物的产生浓度分别为 COD 1980 mg/L, BOD $_5$ 1570 mg/L, SS 800 mg/L。

(2) 循环冷却水排污水

项目循环冷却补充水用水量为 4320m³/a,循环水量为 57600m³/a。蒸发损耗为 3456m³/a,强制排水 864m³/a,进入公司现有厂区的污水处理站处理。废水中各污染物的产生浓度分别为 COD 300mg/L,BOD $_5150$ mg/L,SS 200mg/L。

(3) 尾气处理废水

项目工艺尾气先采用二级冷凝回收,再经喷淋塔吸收处理。项目工艺尾气喷淋塔用水量为 240m³/a,循环水量为 6000m³/a,蒸发损耗为 12m³/a,废水排放量为 228m³/a,进入公司现有厂区的污水处理站处理。废水中各污染物的产生浓度分别为 COD 1580mg/L,BOD₅ 420mg/L,NH₃-N 41mg/L,SS 251mg/L。

(4) 车间地面清洗废水

项目车间需清洗的面积约为9216m²,用水量按照2L/m²次计算,按平均每星期清洗1次计算,一年工作300天,共43个星期,即冲洗43次。则冲洗用水量为793m³/a,车间地面清洗废水产生量按用水量的80%计算,则车间地面清洗废水量为634.4m³/a。该部分废水进入公司现有厂区的污水处理站处理。废水中各污染物的产生浓度分别为COD500mg/L,SS500mg/L。

(5) 生活污水

项目新增工作人员 34 人,根据《GB50015-2019 建筑给水排水设计规范》,项目生活用水按人均定额 100L/人·天计,生活用水量为 $1020m^3/a$,排水系数取 0.80,则生活污水产生量为 $816m^3/a$ 。该部分废水进入公司现有厂区的污水处理站处理。废水中各污染物的产生浓度分别为 COD 350mg/L,BOD $_5200mg/L$,SS 200mg/L,氨氮 25mg/L。

本项目所产生的废水将通过废水管道抽至公司现有厂区,依托公司现有厂区的污水处理站进行处理,污水处理站处理能力为 3750m³/d。污水处理站处理工艺为生产废水→格栅→调节均衡池→中和池→蒸汽加热池→UASB 厌氧反应器→初沉池→预曝池→生物接触氧化→二沉池→达标排放。根据待建项目《湖北江瀚新材料股份有限公司功能性硅烷偶联剂及中间体建设项目环境影响报告书》,公司现有厂区需处理的废水量为 671.1m³/d,公司现有厂区污水处理站仍有 3078.9m³/d 的处理余量,本项目和同期建设项目将新增废水 107.4m³/d,公司现有厂区污水处理站完全有能力进行处理。公司废水处理达标后经开发区污水管网排入荆州申联环境科技有限公司污水处理厂集中处理,最终排入长江(荆州城区段)。

本项目废水污染物产生及排放情况见下表。

表 4-8 项目废水污染物产排情况一览表

污水	污染源	废水量	污染物	产生浓 度	产生量	排放浓 度	排放量	治理措施
种类	行 案概	m³/a	名称	mg/L	t/a	mg/L	t/a	1 石垤钼旭
			COD	1980	6.534	/	/	
1	工艺废水	3300	BOD ₅	1570	5.181	/	/	
			SS	800	2.640	/	/	废水全部
	作IT VA ±п		COD	300	0.259	/	/	依托公司
2	循环冷却 水排污水	864	BOD ₅	150	0.130	/	/	现有污水
	小排行外		SS	200	0.173	/	/	处理站进
			COD	1580	0.360	/	/	行处理,处
3	工艺尾气	228	BOD ₅	420	0.096	/	/	理达标后
3	处理废水	228	SS	251	0.057	/	/	经开发区
			NH ₃ -N	41	0.009	/	/	污水管网
4	车间地面	634.4	COD	500	0.317	/	/	排入荆州 申联环境
	清洗废水		SS	500	0.317	/	/	科技有限
			COD	350	0.286	/	/	公司污水
5	生活废水	816	BOD ₅	200	0.163	/	/	处理厂集
	工作及小	810	SS	200	0.163	/	/	中处理,最
			NH ₃ -N	25	0.020	/	/	终排入长
			COD	1328	7.756	147	0.859	江(荆州城
L ₁ ·	宗合废水	5842.4	BOD ₅	953	5.570	52	0.304	区段)
	ホロ <i>I</i> 及小	3042.4	SS	573	3.350	10	0.058	
			NH ₃ -N	5	0.029	5	0.029	

由上表可见,本项目废水经厂区污水处理站处理后的污染物浓度满足 GB8978-1996《污水综合排放标准》表 4 三级标准要求和荆州申联环境科技有限 公司污水处理厂接管协议要求。

项目预处理后的废水经荆州申联环境科技有限公司污水处理厂进行集中处理后,最终废水排放情况列入下表。

	废水量	污染	地排放浓	攻度(mg	/L)	污染物排放量(t/a)			
废水来源	(m ³ /a)	COD	BOD ₅	SS	NH ₃ -N	COD	BOD ₅	SS	NH ₃ -N
综合废水	5842.4	50	10	10	5	0.292	0.058	0.058	0.029

表 4-9 项目集中处理后废水污染物排放情况

4.4.2.3 噪声污染源分析

本项目高噪声设备主要有各类泵机、空压机、冷冻机、风机等,设备声源值在75~105dB(A)之间,采取购置先进低噪声生产设备、隔声罩、减震、消声器和厂房隔声等措施控制噪声,采取以上措施后,再经距离衰减,厂界噪声贡献值满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准要求,各产生噪声设备的声压级见下表。

序号	污染源	数量(台/套)	治理前噪声值 dB(A)	治理措施	治理后噪声值 dB(A)
1	各类泵机	20	75~80	减振、隔声	≤75
2	空压机	2	90~100	减振、隔声	≤75
3	冷冻机	4	95~105	减振、隔声	≤75
4	风机	4	90~100	减振、隔声	≤75

表 4-10 建设项目噪声源强一览汇总表

拟采用治理措施

- ①建隔声房、减振措施:降低 20dB(A) 左右。
- ②重视厂区的绿化,种植声屏障效应较好的相间林带(10m宽左右)。
- ③在生产设备选型过程中,应尽可能选用技术性能优良、低噪音设备。

4.4.2.4 固体废物污染源分析

本项目正常工况下固废为设备维修废油 S1、污水处理污泥 S2 和生活垃圾 S3。

(1)设备维修废油 S1

项目在设备检修时会产生废机油,产生量约为 3.6t/a。对照《国家危险废物名录》(2021 版),属于 HW08 类危险废物(900-249-08),项目拟委托有处理资质的单位进行处理。

(2) 污水处理污泥 S2

项目废水经污水处理站处理后剩余污泥产生量约为 1.4t/a,根据国土资源部 武汉资源环境监督检测中心(中国地质大学(武汉)分析测试中心)对该公司 污水处理厂污泥性质鉴定报告结论:该厂污泥不属于危险性废物,为一般工业 废物,作为制砖建材或者进入生活垃圾填埋场进行填埋处理。

(3) 生活垃圾 S3

项目新增劳动定员 34 人,生活垃圾的产生量按照 0.5kg/人·天计算,生活垃圾产生量为 5.10t/a。生活垃圾由环卫部门集中清运处置。

项目产生的固体废弃物见下表。

固体废物	产生量 t/a	废物种类	排放去向
设备维修废油 S1	3.6	HW08 900-249-08 危险废 物	厂区内暂存后委托有资 质单位处置
污水处理污泥 S2	1.4	一般工业废物	作为制砖材料或进入生 活垃圾场进行填埋处理
生活垃圾 S3	5.10	生活垃圾	环卫部门收集清运
小计	10.1		

表 4-11 项目固体废弃物一览表 单位: t/a

4.4.2.5 副产物分析

根据项目物料平衡分析,项目产生的副产物主要为乙醇,项目副产物产出及去向情况列入下表。

副产物	产生量 t/a	去向
乙醇	15205	自用
小计	15205	

表 4-12 项目副产物一览表 单位: t/a

由上表可见,本项目产生的乙醇部分回用于本项目配液工序,部分泵入公司现有厂区使用,其副产物处理具有可行性。

4.4.2.6 非正常工况主要污染源强分析

项目非正常排放可有四种情况:开停车、设备故障、停电及产品不合格、环保设施故障。

(1) 开停车

项目各工序有较强独立性,自动化控制水平高,只要严格按照操作规程进行生产操作,即可实现顺利开车。

装置停车时,按照操作规程要求,各工序设施经置换后方可停车打开设备。 装置停车时置换排气基本同正常运行时排气,经处理设施处理后排放。

(2) 设备故障

反应等工序设备故障,需要停车维修,维修时阀门关闭,前续剩余物料排入事故钢瓶,待设备正常运行后继续反应或加工。因停车维修而产生的设备置换废气和设备冲洗水同装置开停车情况。

(3) 停电事故

停电包括计划性停电和突发性停电两种情况,计划性停电,可通过事先计划停车或备电切换,避免事故性非正常排放。突发性停电时,需要手动及时停止加料,短时内启动备用电源或发电机。厂区配备有二路供电电源和备用发电机,自控仪表、监视等控制提供 UPS 不间断电源,因此生产系统在突发性短时段停电时仍可保持正常运行。

(4) 产品不合格

当发生生产工况异常而产生不合格产品时,不合格产品将收集并返回前一道生产工序重新进行处理,不排入环境,故对环境不会造成不良影响,但此情况下生产性排污量比正常生产时要略大一些。

(5) 环保设施故障

对于控制和削减污染物排放量的环保设备故障,污染物去除率将下降甚至 完全失效,在失效情况下,排污量等于污染物产生量。

废气非正常排放情况分析

本项目建成投产后产生废气非正常排放(事故排放)的情况主要是由于废气处理设施未能正常运行导致大量废气及污染物直接排放,废气污染物非正常排放(事故排放,各污染治理效率为0)情况详见下表。

表 4-13 废气污染物非正常排放(事故排放)情况一览表

污染源	排放源	污染物名称	产生状况 kg/h
生产车间	2世长	VOCs	13.611
生厂	3#排气筒	HCl	0.278

废水非正常排放情况分析

本项目新厂区拟设置一座 1785m³ 的事故及初期雨水池,在废水处理系统出现故障时对不能处理达标的废水进行暂时存放,待废水处理系统恢复正常后再排入污水处理系统处理,因此公司废水处理系统出现故障时不会对厂外环境产生不利影响。

废水处理站防范非正常排放所采取的控制措施有:

- ①废水总排口设置在线监测和人工监测,监测发现水质排放异常时,自动启动回抽泵,将废水抽入事故水池,确保不达标废水不排出厂外。
- ②及时查明系统异常原因或位置,及时排除异常现象,或启动应急预案,及时采取应急措施。
- ③排除异常后,事故水池异常废水排入废水处理设备处理,处理达标后纳管排放。
- ④废水监测数据在中控室得到实时记录和保存,同时加强值班人员巡检,按时检查废水处理设施运行情况,确保这些设施处于受控状态且正常运转,保证所有废水达标排放。

4.4.3 污染物产生及排放情况汇总

项目染物产生及排放情况汇总见下表。

表 4-14 项目污染物产生及排放情况汇总表

			主要污染物(t/a)				从男批选五批
类别 排放源	排放量	污染物 名称	产生量	削减量	排放量	处置措施及排 放去向	
	3#排气筒	5000m ³ /h	VOCs	98.0	97.265	0.735	二级冷凝+喷淋
废气		3000111711	HCl	2.0	1.700	0.300	吸收处理
	储罐区	/	VOCs	1.110	0.999	0.111	油气回收系统, 无组织排放
废水	新增综合 废水	5842.4m³/a	COD	7.756	6.897	0.859	依托公司现有 污水处理站进

			BOD ₅	5.570	5.266	0.304	行处理, 处理达 标后经开发区				
							SS	3.350	3.292	0.058	污水管网排入 荆州申联环境 科技有限公司
			NH ₃ -N	0.029	0	0.029	污水处理厂集中处理,最终排入长江(荆州城区段)				
	危险废物	废矿物	油	3.6	3.6	0	暂存后委托有 资质单位定期 处理				
固体	一般工业废物	污水处理	!污泥	1.4	1.4	0	作为制砖材料 或进入生活垃 圾场进行填埋 处理				
	生活废物	生活垃	圾	5.1	5.1	0	环卫部门处理				

4.4.4 "三本帐"分析

本项目选址地为公司现有厂区用地,项目建设前后"三本帐"分析见下表。

同期建 本项目 以新带 现有工 待建工 设项目 最终排 排放增 项目 程排放 程排放 排放量 老消减 排放量 放(t/a) 减 (t/a) 量 (t/a) 量 (t/a) 量(t/a) (t/a)(t/a)废气量 0 0 0 0 0 0 0 万 m³/a 颗粒物 0 废 气 SO_2 0 0 0 0 0 0 0 NOx 0 0 0 0 0 0 0 **VOCs** 1.766 1.152 0.846 0.284 0 4.048 +1.130废水量 2.891 0.584 17.242 2.638 0 23.355 +3.222万 m³/a 废 水 COD 8.621 1.446 0.292 1.319 0 11.678 +1.611 NH₃-N 0.862 0.145 0.029 0.132 0 1.168 +0.161

表 4-15 项目建设前后"三本帐"分析一览表

2、废水污染物按最终排入外环境污染物排放量统计。

4.5 环境影响减缓措施

4.5.1 大气环境影响减缓措施

注: 1、现有工程排放量按实际排放量统计。

项目在水解、基材喷涂、超临界干燥、母液精馏的过程中会产生工艺废气,主要污染物为乙醇(以 VOCs 进行评价)和氯化氢。本项目采用一级中冷+二级深冷,回收低沸物,其乙醇回收效率约为 95%,不凝尾气抽至喷淋塔吸收处理,喷淋处理效率 85%,尾气喷淋吸收处理后,大部分尾气被带入废水,少量尾气在经 20m 的排气筒 3#排放。

本项目新建的储罐区进料采用槽罐车运输罐的气相管道与原料储罐的气相 管道相连接,运输罐的液相管道与原料储罐的液相管道相连接,槽罐车的物料 通过磁力卸料泵输送至原料储罐。储罐区出料采用原料储罐的气相管道与计量 罐的气相管道相连接,原料罐液相管道与计量罐液相管道相连接,储罐内的原 料通过磁力输送泵输送至车间计量罐。储罐区进料和出料均采用了密闭内循环 的方式,尽可能减少了储罐区大小呼吸废气的无组织排放。

4.5.2 地表水环境影响减缓措施

项目废水主要为工艺废水、循环冷却水排污水、喷淋装置区产生的尾气处理废水、车间地面清洗废水及生活废水。本项目所产生的废水将通过废水管道抽至公司现有厂区,依托公司现有厂区的污水处理站进行处理,污水处理站处理能力为3750m³/d。污水处理站处理工艺为生产废水→格栅→调节均衡池→中和池→蒸汽加热池→UASB 厌氧反应器→初沉池→预曝池→生物接触氧化→二沉池→达标排放。根据待建项目《湖北江瀚新材料股份有限公司功能性硅烷偶联剂及中间体建设项目环境影响报告书》,公司现有厂区需处理的废水量为671.1m³/d,公司现有厂区污水处理站仍有3078.9m³/d的处理余量,本项目和同期建设项目将新增废水107.4m³/d,公司现有厂区污水处理站完全有能力进行处理。

处理后废水污染物浓度满足 GB8978-1996《污水综合排放标准》表 4 三级标准要求和园区管网接管要求。公司废水处理达标后经开发区污水管网排入荆州申联环境科技有限公司污水处理厂集中处理,最终排入长江(荆州城区段)。

4.5.3 声环境影响减缓措施

本项目高噪声设备主要有各类泵机、空压机、冷冻机、风机等,设备声源值在75~105dB(A)之间,采取购置先进低噪声生产设备、隔声罩、减震、消声器和厂房隔声等措施控制噪声,采取以上措施后,再经距离衰减,厂界噪声

贡献值满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准要求。

4.5.4 固体废物处置措施

本项目产生的固体废弃物包括设备维修废油 S1、污水处理污泥 S2 和生活垃圾 S3。其中设备维修废油 S1 属于 HW08 类危险废物(900-249-08),污水处理污泥 S2 属于一般工业固废。

固体废物通过分类收集分类处置,生活垃圾交由园区环卫部门处置;危险废物废矿物油,厂区内收集暂存后交由有资质单位进行处置;污水处理污泥作为制砖建材或者进入生活垃圾填埋场进行填埋处理。各种固体废物均可得到妥善处置,不对外排放。

4.6 清洁生产分析

4.6.1 企业清洁生产综述

清洁生产是指既可满足人们的需要又可合理使用自然资源和能源并保护环境的实用生产方法和措施。《中华人民共和国清洁生产促进法》第二条指出:清洁生产是指不断采取改进设计、使用清洁的能源和原料、采用先进的工艺技术与设备、改善管理、综合利用等措施,从源头削减污染,提高资源利用效率,减少或者避免生产、服务和产品使用过程中污染物的产生和排放,以减轻或者消除对人类健康和环境的危害,该法从法律的高度要求企业重视和实施清洁生产。第十八条规定:新建、改建和新建项目应当进行环境影响评价,对原料使用、资源消耗、资源综合利用以及污染物产生与处置等进行分析论证,优先采用资源利用率高以及污染物产生量少的清洁生产技术、工艺和设备。

《大气污染防治行动计划》、《水污染防治行动计划》、《土壤污染防治行动计划》中均明确要求大力推行清洁生产,结合产业结构调整,提倡循环经济发展模式,采用实用技术改造传统企业,支持企业通过技术改造,节能降耗,综合利用,实行污染全过程控制,减少生产过程中的污染物排放。随着工业化生产的不断发展,人们越来越认识到仅仅依靠开发有效的污染控制技术所能实现的环境改善是有限的,而关心产品和生产过程对环境的影响,依靠改进生产工艺和加强生产管理等措施来消除污染才会更为有效,这就要求企业在选择产

品、原材料、生产工艺等方面实行清洁生产并结合废物利用、节能节水等措施 使工业生产对周围环境的破坏程度降至最低,实行清洁生产是全球可持续发展 战略的要求,是控制环境污染的有效手段。生产技术工艺水平基本上决定了污 染物的产生量和状态,先进而有效的技术可以提高原材料的利用效率,减少废 弃物的产生。生产设备水平在实现清洁生产要求方面具有重要作用,设备的适 用性及维护保养情况均会影响到废弃物的产生。因此,生产技术工艺和设备性 能是实行清洁生产的重要环节。

4.6.2 原辅材料及能源

该项目使用的原料是国内常用的原材料,原料易得,运输贮存方便;该项目使用的原料纯度较高,从一定程度上减少了废物的产生;在原辅助材料的选择上,在满足工艺要求的前提下,尽量选择了低毒的原辅材料。基本达到清洁生产对使用物料的要求。

从能源的消耗来看,该项目使用的清洁能源(电能、蒸汽)能满足清洁生产能源方面的要求。该项目不使用高污染燃料。

该项目需安装新型节能疏水阀门,加强管线维修,减少能耗,并对车间安装蒸汽流量表、电表、气表、水表,进行计量考核,提高项目的清洁生产潜力。

4.6.3 设备及过程控制的先进性

根据工艺操作和安全的特点,操作经验以及国内配套仪表生产现状,在保证生产过程稳定可靠运行的前提下,在设备安装过程中将尽可能提高集中控制和自动化水平。在过程控制上减少人工操作中间环节,项目主要生产岗位均采用自动控制,进料流量控制,各生产环节温度控制,压力控制,流量控制采用自动控制,温度控制自动连锁装置的温度显示仪,主要设备的温度,压力等参数,采用集中显示。

如项目物料投加采用数控操作,有效的利用原料,减少消耗,降低废气治理成本。

在安全上采用集散控制系统实现对工艺过程的监视,控制和报警,同时拟采用程序逻辑控制系统,实现生产过程连锁程序控制,以保证生产安全及正常开停车。通过加强管理和及时维修更换破损的管道,机泵,阀门,来减少和防止生产过程中有毒有害物质的跑、冒、滴、漏。无组织废气排放控制在《大气

污染物综合排放标准》(GB16297-1996)规定的厂界外无组织监控浓度要求之内。

自动化控制系统对投料加入量、反应温度、压力等实行实时控制、配合生产过程中关键点的取样分析,及时调整相关参数,减少物料的过量投放,提高产品的转化率和产品的收得率,也有效降低生产过程中污染物的产生量,节省资源、能源,提高经济效益。通过采用以上先进的过程控制技术,充分发挥设备的潜在能力,稳定工艺操作,提高精度,减少人为误差,使故障率降低。一方面有利于强化生产管理,提高产品质量,降低能耗;另一方面操作简便,减轻操作人员的劳动强度。因此,项目在生产设备选择及过程控制上是先进的。

此外生产装置的布置均按流程顺序放置,既节能也有利于清洁生产。

4.6.4 单位产品能耗和产污量分析

4.6.4.1 单位产值综合能耗

装置总能耗为1271.04吨标煤/年。

单位产值能耗为 1271.04 吨标煤/66000 万元=0.0193 吨标煤/万元。

目前我国石油和化工行业万元产值能耗为 0.3547 吨标准煤,可见该项目单位产值能耗远低于国内平均水平,基本符合清洁生产要求。

4.6.4.2 单位产品产污量

随着工业化生产的不断发展,仅仅依靠开发有效的污染控制技术所能实现的环境改善是有限的,依靠改进生产工艺和加强生产管理等措施从源头来消除污染是控制环境污染的有效手段。

根据工程分析内容,该项目污染物在末端治理前的产生情况与同类型企业指标对比情况见下表。

指标	拟建项目指标	同类型企业指标
污水量(m³/tp)	1.322	1.785
COD (kg/tp)	1.755	2.018
NH ³ -N (kg/tp)	0.0066	0.0079

表 4-16 项目污染物产生情况对比一览表

由上表的分析可以看出,该项目污染物在终端治理前产生量较同类型企业相比更低,具有较高的清洁生产水平。

4.6.5 环境管理

(1) 政策法规要求

湖北江瀚新材料股份有限公司将制定完善的环境管理和风险管理制度,能够满足各项政策法规的要求。

(2) 环保设施管理

安排专人负责环保设施管理,并做好设备运行状况记录,一旦出现问题,立即向上级汇报,按照应急方案处理事故,将环境风险降低到最小。

(3) 监控管理

该项目各生产装置和部分辅助设施采用 DCS(Distributed Control System,分散控制系统)进行控制,实现了对工艺过程的监视、控制和报警,可确保整个装置安全、稳定的正常运行。

该项目工程采用操作室进行集中控制和就地控制,操作室设置在各车间内, 选用仪表盘对主要工艺参数如温度、压力、流量、液位进行检测、记录、调节、 联锁、报警。

为了降低风险,生产车间、原料库、罐区等易燃、易爆、腐蚀性物质集中场所,现场仪表选用防爆型、防腐蚀型,确保可靠实用。在易燃、易爆、有毒气体集中的场所分别选用可燃(有毒)气体报警器,防止发生风险事故。

项目的各生产设备还将根据需要设置安全设施,如通风、接地、避雷针、安全阀、阻火呼吸阀、严格密封、氮气保护、防毒面具及清水冲洗等设施,以确保安全生产。

在生产管理中要充分考虑清洁生产因素:

- ①制定生产工艺规程、岗位操作法和标准操作规程不得任意更改。如需更 改时,应按制定时的程序办理修订、审批手续。
- ②每批产品应按产量和数量的物料平衡进行检查。如有显著差异,必须查明原因,在得出合理解释、确认无潜在质量事故后,方可按正常产品处理。
- ③产品应有批包装记录。内容包括名称、批号、规格、合格证、数量,发放人、领用人、核对人、负责人等签名。
 - ④督促全厂和本车间的环保工作,并赋予相应的权力和职责。

4.6.6 清洁生产小结

综上所述,通过对该项目原辅材料先进性、生产工艺先进性、技术装备水平先进性和产品水耗能耗及产污量等各方面的分析,该项目基本符合清洁生产要求,且有一定的先进性。从整体上看,该项目清洁生产水平处于国内先进水平。

4.6.7 清洁牛产建议

总体上看本次拟建项目在清洁生产方面作了较全面的考虑,评价针对项目提出如下建议:

工艺装备水平持续提升

建议企业在今后的生产过程中,不断提升工艺装备水平。积极探索使用更加环保的溶剂、原料,以进一步减少对环境的负面影响。

持续清洁生产

1. 建立和完善清洁生产组织

清洁生产是一个动态、相对的概念,是一个连续的过程,因而需有一个固定的机构、稳定的工作人员来组织和协调这方面工作,以巩固已取得的清洁生产效果,并使清洁生产工作持续地开展下去。因此建议企业应成立清洁生产组织,由总经理直接领导,负责清洁生产日常工作的开展。

2. 建立和完善清洁生产管理制度

建立和完善清洁生产管理制度,应该把审核成果纳入公司的日常管理轨道,建立激励机制和保证稳定的清洁生产资金来源,具体如下:

(1) 把清洁生产审核成果纳入公司的日常管理

把清洁生产的审核成果及时纳入公司的日常管理轨道,是巩固清洁生产成果、防止走过场的重要手段,特别是审核过程中产生的一些无低费方案,如何使用它们形成制度显得尤为重要。

- ①把清洁生产审核提出的加强管理的措施文件化,形成制度。
- ②把清洁生产审核提出的岗位操作改进措施,写入岗位的操作规程,并要求严格遵照执行。
 - ③把清洁生产审核提出的工艺过程控制的改进措施,写入组织的技术规范。
 - ④进一步落实清洁生产审核提出的各类方案。

⑤对于产品中试,企业应及时上报审批或备案。

(2) 建立和完善清洁生产激励机制

主要包括建立企业日常管理制度、激励机制、资金。对于积极实行清洁生产的工段、车间、部门及时奖励,并在厂内的宣传资料上公开表扬;对于积极提出清洁生产建议的车间和个人,应予以重视并奖励。

3. 制定持续清洁生产计划

清洁生产是一个动态的持续的过程,因而需要制定持续清洁生产计划,使清洁生产工作有组织、有计划地开展下去。

通过持续清洁生产,使公司整体形象得到进一步提升。根据工艺技术水平和管理水平判定,公司主要能源消耗和排污水平已经处于国内同行的先进水平。

4. 加强管理

从车间物耗管理、现场管理、工艺管理、设备管理等方面具体落实,建议如下:

(1) 车间物耗管理

车间内应加强和细化物耗管理工作,即推进企业清洁生产审计,车间每月 生产加工的产品量及其对应的物耗量应有详细记录,从而有效地控制物料的投 入、降低成本。通过清洁生产审计,能够核对企业单元操作中原料、产品、水 耗和能耗等因素,从而确定污染源的来源、数量和类型,进而制定污染削减目 标,提出相应的技术措施。实施清洁生产审计还能提高企业管理水平,最终提 高企业的产品质量和经济效益。

(2) 现场管理

在生产现场,配置计量器,如对用水、用电较大的槽位设计量表,从而减少浪费,减轻末端治理的负荷。

(3) 工艺管理

生产车间应制定严格的操作规程,操作人员应经培训并考核合格后方能单独上岗,使整个生产过程的原材料消耗和污染物排放降低。企业应加强对工艺、技术人员的环保专业知识的宣传教育,强化环境意识,在引进新工艺、新技术时,征求当地环保部门及其他管理部门的意见。

(4) 设备管理

车间的环保设备需定期检修,如遇到运行不正常,则需要维护更新或改进。 同时提高环保设备的处理能力,确保废水、废气等能达标排放,减少对周围环 境的影响。

5. 加强资源回收

加强整个生产系统的密闭化,减少跑冒滴漏现象,提高溶剂回收率。

6. 开展 ISO14001 环境管理体系标准

根据国内企业开展 ISO14001 环境管理体系认证的经验,均取得较好的经济效益,环保效益也十分可观。因此公司建成后应尽快开展 ISO14001 环境管理体系认证工作,将对公司环境管理水平进一步科学化、体系化起到积极作用。

5 环境现状调查与评价

5.1 自然环境现状

5.1.1 地理位置

荆州市位于东经 111°15′-114°05′, 北纬 29°26′-30°29′。地处湖北省中南部, 江汉平原腹地,长江自西向东横贯全市,全长 483 公里。荆州东连武汉、西接 宜昌、南望湖南常德,北毗荆门、襄樊。位于两湖平原经济协作区的中心地带, 全市国土总面积为 14067km²。平原湖区占 78.7%,丘陵低山区占 21.1%。项目 选址区域位置见附图。

荆州市沙市化工园区位于荆州市沙市区北部锣场镇内,距荆州市城区7公里,北临锣场镇区,西临关沮,南抵豉湖路,东与观音垱接壤,三一八国道、汉宜高速公路横贯东西,东方大道纵穿南北,高速公路进出口位于园区内。规划范围为东至岑观公路,南至豉湖渠,北至汉宜高速公路、318国道,西至白水滩,总面积约17.62平方公里。

荆州市沙市化工园区位于江汉平原腹地,北枕百里长湖,南靠万里长江,东望省会武汉,西临三峡宜昌。318 国道、沪蓉高速公路和80米宽的东方大道在这里纵横交错。距荆州市中心城区8公里,距长江沙市港12公里,距焦枝铁路荆门至沙市支线5公里,沪蓉高速铁路将横贯而过,距三峡机场75公里。

项目选址位于湖北省荆州市沙市区经济技术开发区群力大道 36 号,所在区域基础设施完善,交通便利,具体地理位置见附图。

5.1.2 气候气象

荆州地区属于北亚热带内陆湿润季风气侯,夏热冬冷,四季分明,雨量充沛。据多年统计,历年平均气温 16.200℃,极端最高气温 38.600℃,极端最低-14.900℃。常年主导风向为北风,平均风速 2.300m/s,出现频率 17%,夏季主导风向为南风,出现频率为 20%;冬季主导风向为北风,出现频率为 20%;年静风频率为 22%,夏季静风频率为 19%,冬季静风频率 23%;年平均降雨量 1113.000mm,年最大降雨量 1500.000mm,小时最大降雨量 73.000mm,平均蒸发量 1312.100mm;年平均日照时数 1865.000h;年平均无霜期 256.700d,年均

雾日数 38.200d;最大积雪厚度 300.000mm;年平均气压 1122.200mb;历年平均相对温度 80%,最冷月平均湿度 77%,最热月平均相对湿度 83%(7月)和 82%(8月)。

5.1.3 水系水文

荆州城区南有长江、北有长湖,是荆州市城区的两大过境水系。荆州市境内有豉湖渠、西干渠、荆襄河、荆沙河等四条主要河渠,均无天然源头。

(1) 长江水文

长江荆江中段南傍荆州市中心城区而过,上游来水由西入境,于沙市盐卡拆向东南,形成曲率半径 7.100km 的弯道。根据多年水文统计资料,各年平均水位 34.020m,历史最高水位 45.000m;江面平均宽度 1950.000m,最大宽度 2880.000m,最小宽度 1035.000m;平均水深 10.500m,最深 42.200m;平均流速 1.480m/s,最大流速 4.330m/s;平均流量 14129.000m³/s,最大流量 71900.000m³/s,最小流量 2900.000m³/s;平均水温 17.830℃,最高 29.000℃,最低 3.700℃,平水期(4-6月,10-12月)平均水位 32.220m,平均流速 1.180m/s,平均流量 10200.000m³/s;丰水期(7-9月)平均水位 36.280m,平均流速 1.690m/s;平均流量 24210.000m³/s;枯水期(1-3月)平均水位 28.720m,平均流速 0.870m/s,平均流量 4130.000m³/s。

(2) 长湖水文

长湖是一个跨区域的天然水体,原东西长 30.000km, 南北宽 18.000km, 现有湖面 157.500km², 最低水位 27.200m, 最高洪水水位 33.880m。是沿湖人民的饮用、养殖和灌溉水源,同时接纳荆州市区部分城市污水。

(3) 西干渠水文

西干渠是四湖(长湖、三湖、白露湖、洪湖)防洪排涝工程的四大排水干渠之一。西起沙市区雷家垱向东南在监利汪桥乡以东扬河口闸汇入总干渠,全长91km。西干渠沙市段止于砖桥,全长15km,底宽18m,边坡1:1.5,设计底高程25.12~25.70m,常年水位26.98~26.78m;由于渠道上多处筑坝,已起不到防洪排涝作用,凡排入西干渠的污水均在沙市豉湖路口进入豉湖渠。

(4) 豉湖渠(沙市段)水文

豉湖渠是四湖防洪排涝工程的主要排水支渠之一,建于 1960~1961 年。起于荆州市江津路、豉湖路交叉处,自西南向东北流至朱廓台,然后拆向正东,

经沙市区岑河、观音垱,在何家桥附近汇入总干渠,全长约 22km。

豉湖渠沙市段流经三板桥、同心、连心、宿驾等村,止于锣场东港湖,全长 10km,是荆州城区的主要排水渠道。豉湖渠干流由长港渠、西干渠、少量红光路泵站溢流管排出的城市污水组成。

(5) 地下水

地下水类型及埋藏条件:评价区地下水主要为二种类型,即赋存于第①层 耕土及第②层粉土夹粉砂层中的上层滞水和下部砂、砾、卵石层中的承压水。 根据地层的岩土性质,可将场地内各土层含、隔水性划分如下:第①、②层为 弱透水孔隙含水层;第③、④层为相对隔水层;第⑤层为弱透水孔隙承压含水 层;第⑥层为弱~中等透水孔隙承压含水层;第⑦、⑧层为强透水的孔隙承压含 水层。

地下水补、迳、排条件及水位动态变化规律:赋存于第①层耕土及第②层 粉土夹粉砂层中的上层滞水,水量不大,局部较丰富,主要接受大气降水的补 给,丰水期水位较高,枯水期水位较低。上层滞水的迳流条件较为复杂,其特 点是流径短,无明显方向性,主要受微地貌控制,由地势高处向地势低处迳流。 上层滞水的排泄方式一是通过地面或植物蒸发排泄,二是就近向附近地表水体 侧向迳流排泄。

赋存于砂、卵砾石层中的孔隙承压水, 主要接受远源大气降水的侧向迳流补给和长江水的侧向补给, 迳流条件下部优于上部, 其排泄方式是向相邻含水层迳流排泄, 其次是人工抽水排泄。地下水位变化与长江同步, 丰水期水位较高, 枯水期水位较低。

5.1.4 地形地貌

项目地处荆州市沙市区锣场镇,该区域地处江汉平原西部,地形受荆江河道变迁和泥沙流程淤积的影响,呈西南高、东北低之势,大地构造单元属于江汉平原拗陷江陵凹陷沙市小背斜的东北翼部,白垩—第三纪以来,长期下沉,发生河湖相沉积,堆积了巨厚的白垩第三系岩层和第四系河湖相松散堆积物。地貌类形属于河漫滩,为荆北河湖平原组成部分,以318 国道以北则为一级阶地。按地形和形成过程可分为三级地面:一级地面为低老河漫滩,标高28~34m(黄海高程)地势低洼,湖沼甚多,但局部起伏,南高北低;二级地面为人工

地形,标高 32~36m,现为老城区;三级地面即堤外滩面,表面为人工填土,下层为亚粘土层,再下层为细砂。

5.1.5 地质地震

项目选址区域大部分地区属第四条全新式统冲—洪积、湖积、冲积而成。 1~1.25m深一般为新近堆积土、填土、粉土、粉细砂、粉质粘土等,地耐力一般 为80~120KN/m²左右,2.5~8m深入一般为淤泥质土,有时夹有粘土、老粘土, 20m以下为老粘土、粉质粘土、粉砂、细砂、中砂、粗砂、卵石层等,地耐力一般为120~650KN/m², 该地区地质条件较好。

根据国家地震强度区划图和湖北省抗震办文件, 地震基本烈度为6级。

5.1.6 土壤情况

荆州市土壤类型多样,土层深厚,土壤肥沃,共有7个土类,14个亚类,43个土属,200个土种。土类总面积563.58千公顷(量算面积,下同),其中水稻土281.43千公顷;潮土186.82千公顷;石炭岩土26.41千公顷;红壤25.5千公顷;黄棕壤32.27千公顷;草甸土10.72千公顷;沼泽土433.33公顷。耕地评级结果为一级173.49千公顷(其中水田89.6千公顷),占36.38%;二级245.83公顷(其中水田148.95千公顷),占51.54%;三级57.62千公顷(其中水田42.81千公顷),占12.08%。土壤有机质含量:大于3.0%的耕地面积140.34千公顷、占29.99%;1.0%~3.0%的耕地面积315.68千公顷,占67.45%;小于1.0%的耕地面积11.94千公顷,占2.55%。耕地土壤具有种植作物的多宜性。

5.1.7 资源特征

荆州市生物资源及水力资源丰富,矿产资源贫乏。荆州市河湖众多,水网密布,是全国内陆水域最广、水网密度最高的地区之一。全市有大小河流近百条,均属长江水系,主要有长江干流及其支流松滋河、虎渡河、藕池河、调弦河等;有千亩以上湖泊30余个,总面积8万公顷。其中洪湖为湖北省第一大湖,总面积3.55万公顷;长湖次之,总面积1.2万公顷。荆州市不仅水资源极其丰富,开发利用程度较高,而且水质好。全市有各类水域面积353.55千公顷,占全市国土面积的25.13%。其中可养水面125.22千公顷,占水域面积的35.42%。江河过境客水4680亿 m³,境内地表径流,丰水年91.6亿 m³,枯水年48.5亿

m³。水资源开发利用程度高,丘陵区平均为 12.84%,平原区平均为 13.22%; 水质达到一级饮用水标准的占 80%以上,符合地面水质二级标准的达 90%以上,符合农业灌溉三级标准的占 98%以上。

生物资源: 荆州市生物资源十分丰富,具有种类多、分布广、南北兼备等特点。据统计,全市生物资源 3300 多种,其中农作物品种 1169 个,畜禽品种 33 个,水生生物 385 种(鱼类 82 种),森林植物 620 余种,药用生物 956 种,害虫天敌 233 种。丰富的生物种类和品种资源为农业结构调整和生态系统的优化配置提供了重要的物资基础。

矿广资源:全市已发现矿产 35 种,其中探明有一定工业储量的 13 种,已 开采利用的 20 种。主要能源矿种有石油、煤炭;化学矿产有岩盐、囱水、芒硝、硫铁矿、重晶石;建材矿种有大理石、花岗石、石灰石、粘土、河道砂、卵石;冶金辅助材料有白云岩、优质硅石、耐火粘土;新型矿种有膨润土。此外还有砂金、脉金。

5.1.8 生态环境特征

评价区域内目前地表植被覆盖较好,生物物种简单,尚未发现珍稀物种和需要特别保护的生物群落。据现场踏勘及调查,厂区周围无国家保护的珍稀动植物和文物古迹。

5.2 区域环境质量现状调查与评价

5.2.1 环境空气质量现状

5.2.1.1 区域空气环境质量状况及趋势

(1) 评价基准年环境空气质量状况

为了解项目所在区域环境空气质量状况,评价单位对项目周围进行了实地踏勘。根据《环境影响评价技术导则-大气环境》(HJ2.2-2018)要求,依据区域污染气象特点,本工程大气污染特征和项目周围环境敏感点情况,本评价引用荆州市环境保护监测站《荆州市环境质量状况公报(2019 年)》对项目所在区域的环境空气质量状况进行评价。因该公报为 2019 年基准年连续一年的监测数据,且日历年份距今在三年以内,按照 HJ2.2-2018 要求,引用其数据是合理可行的。

根据《荆州市环境质量状况公报(2019 年)》,荆州市沙市区 2019 年全年环境空气质量优良天数 259 天(有效天数 339 天),优良天数比例达到 76.4%,与 2018 年相比-4.5%。

2019年 严重污 轻度污 中度污 重度污 全年有 优良天数比例 地区 优 良 染 效 染 染 染 (%) 开发区 42 217 68 8 4 0 339 76.4

表 5-1 2019 年荆州市沙市区空气质量污染状况天数

2019年,荆州市沙市区 6 项评价指标中,可吸入颗粒物(PM_{10})、细颗粒物($PM_{2.5}$)2 项不达标。

污染物	年评价指标	现状浓度 (μg/m³)	标准值 (µg/m³)	占标率(%)	达标情况
SO_2	年平均质量浓度	9	60	15.0%	达标
NO ₂		33	40	82.5%	达标
PM ₁₀		85	70	121.4%	不达标
PM _{2.5}		45	35	128.6%	不达标
СО	日均浓度的第95百分位数	1500	4000	37.5%	达标
O_3	日最大8小时第90百分位	158	160	98.8%	达标

表 5-2 2019 年荆州市沙市区空气各项指标平均浓度

根据上表可知,2019 年荆州市沙市区环境质量现状监测指标中, SO_2 、 NO_2 、CO、 O_3 年均值均能满足《环境空气质量标准》(GB3095-2012)中"二级标准", PM_{10} 、 $PM_{2.5}$ 年均值不能满足二级标准,其超标倍数分别为 0.21 倍、0.29 倍。根据上述资料判断,荆州开发区为不达标区。

(2) 评价区环境空气质量变化趋势分析

根据《2016~2019年荆州市环境质量状况公报》整理出荆州市沙市区近3年环境空气质量变化趋势如下表。

	THE THE TENT OF TH						
序	1 指标		单位		年度		二级标
号			中 型	2017年	2018年	2019年	准
1	PM ₁₀	年平均浓度	$\mu g/m^3$	91	87	85	70
2	PM _{2.5}	年平均浓度	$\mu g/m^3$	55	47	45	35
3	SO ₂	年平均浓度	$\mu g/m^3$	17	14	9	60
4	NO ₂	年平均浓度	μg/m ³	40	37	33	40
5	CO	24h平均第95百分	mg/m ³	1.6	1.7	1.5	4

表 5-3 评价区近三年环境空气质量变化趋势分析表

		位浓度值					
6	O ₃	最大 8h 滑动平均 第 90 百分位浓度 值	μg/m³	138	154	158	160

由上表可知,2017年~2019年荆州市沙市区 6 项基本评价因子可吸入颗粒物、细颗粒物、二氧化硫、二氧化氮年均浓度连续 3 年整体呈下降趋势,一氧化碳 24h 平均第 95 百分位浓度值总体保持稳定,臭氧最大 8h 滑动平均第 90 百分位浓度值连续 3 年整体呈上升趋势。

(3) 环境空气质量达标方案

为改善全市环境空气质量,《国务院关于印发打赢蓝天保卫战三年行动计划的通知》(国发〔2018〕22号)、《省人民政府关于印发湖北省打赢蓝天保卫战行动计划〔2018-2020年〕的通知》(鄂政发〔2018〕44号)等文件相关要求,先后制定并陆续颁发实施《荆州市大气污染防治行动计划》、《荆州市城市环境空气质量达标规划〔2013-2022年〕》、《荆州市大气污染防治"十三五"行动计划〔2016-2020年〕》等文件。

《荆州市大气污染防治行动计划》总体目标为:到 2017年,全市环境空气质量总体得到改善,重污染天气大幅减少。力争到 2022年,基本消除重污染天气,全市空气质量明显改善,市中心城区空气质量基本达到或优于国家空气质量二级标准。其具体指标为:对大气主要污染物 PM2.5、二氧化硫、氮氧化物、可吸入颗粒物、挥发性有机物等进行重点联防联控;重点加强火电、化工及建材等行业大气污染物排放的监管,加强重点行业、企业污染物减排工作;着重解决重点行业、重点企业污染可能造成的酸雨、灰霾和光化学烟雾污染,建筑工地、码头和露天堆场扬尘污染等问题。到 2017年,我市可吸入颗粒物年均浓度较 2012年下降 15%以上。工作措施包括:加大综合治理力度,减少污染物排放(加强工业企业大气污染综合治理、深化面源污染治理、强化移动源污染防治)、调整优化产业结构,推动产业转型升级(严控"两高"行业新增产能、加快淘汰落后产能、压缩过剩产能、坚决停建产能严重过剩行业违规在建项目)、加快企业技术改造,提高科技创新能力(全面推行清洁生产、大力发展循环经济)、加快调整能源结构,增加清洁能源供应(加快清洁能源替代利用、推进煤炭清洁利用)、严格节能环保准入,优化产业空间布局(调整产业布局、强

化节能环保指标约束、优化空间格局)、健全法律法规体系,严格依法监督管理(提高环境监管能力、提高环境监管能力、实行环境信息公开)、建立区域协作机制,统筹区域环境治理(建立区域协作机制、分解目标任务、实行严格责任追究)、建立监测预警应急体系,妥善应对重污染天气(建立监测预警体系、.制定完善应急预案、及时采取应急措施)、明确政府企业和社会的责任,动员全民参与环境保护(加强部门协调联动、强化企业施治、广泛动员社会参与)。

《荆州市城市环境空气质量达标规划(2013-2022年)》明确近期目标为: 到 2017 年,全市细颗粒物年均浓度控制在 75 微克/立方米以内:可吸入颗粒物 控制在 80 微克/立方米以内。远期目标为: 到 2022 年,全市细颗粒物年均浓度 控制在35 微克/立方米以内,可吸入颗粒物年均浓度在70 微克/立方米以内,达 到国家二级标准要求。近期(2014-2017年)空气质量改善措施的主要任务和重 点工程包括: 调整改善能源结构(控制煤炭消费总量、全面开展市中心城区燃 煤锅炉整治工作、提高能源利用效率、调整和改善城市能源消费结构)、推进 产业升级转型(严控"两高"行业新增产能、压缩过剩产能、坚决停建产能严重 过剩行业违规在建项目、加大落后产能淘汰力度)、优化污染空间布局(调整 产业布局、强化节能环保指标约束、优化空间格局)、加大固定源减排力度(全 面推行清洁生产、大力发展循环经济、加大脱硫脱硝力度、加强颗粒物污染治 理、禁止粘土砖瓦生产、推进挥发性有机物污染治理)、强化移动源污染防治 (加快建设机动车排气检测体系、严格执行机动车准入门槛制度、建立高污染 排放车辆限行制度、强化在用机动车污染治理、加快车用燃油清洁化进程、构 建绿色物流体系、加快发展清洁能源车辆)、深化扬尘等面源污染治理(加强 建筑施工扬尘控制、强化城市道路保洁、加强道路运输管理、加强料堆扬尘控 制、控制农村秸秆焚烧、开展餐饮油烟污染治理)、推进能力建设,提高管理 水平(提高环境监管能力、加强应急能力建设、加强环境信息能力建设、加强 区域联防联控能力建设)。远期(2018-2022年)结合"十三五"、"十四五"相关 环境保护规划,逐步调整产业和能源结构,实施更为深入、更具针对性的减排 措施,减排途径逐渐实现由结构减排与工程减排并重过渡结构减排和中、前端 控制为主,工程减排为辅的减排模式,以环境空气质量达标倒逼产业转型。重

点开展以下工作:①调整经济结构,尽快进入工业化后期,使第二产业在国民 经济中的比重开始下降,提升第三产业比重。培育壮大物流、贸易、金融等生 产性服务业,实现贸易、现代物流与高端制造功能的整体提升。②调整工业结 构和布局, 削减钢铁、水泥等能源消费量大、大气污染物非量大的行业产能重 点发展产品附加值高、单位 GDP 排放强度低的行业主城区扰民工业企业基本外 迁,坚守生态控制线,关闭或者迁出部分重污染企业,逐步实现制造业向区外 转移。③调整能沥结构,建设清洁节能型城市,进一步提升清洁能源肖费比例 一步减少煤炭分散燃烧的比例,煤炭消费总量明显下降。④大力发展循环经济, 强化清洁生产,逐步实现大气污染控制从未端治理到源头控制过渡,逐步步入 工业绿色发晨进程:打造部分排放控制水平在全国领先的标杆型企业。⑤进一 步提升车辆环保管理水平和城市交通管理水平,大力提高公共交通出行比例, 确立公共交通的主导地位:按照国家要求实施更严格的机动车放标准,适时开 晨机动车总量控制。⑥通过精细化管理提高扬尘管理水平,大力减少城市建设 的开复工面积进一步减少扬尘排放。⑦分阶段进行空气质量达标情况考核,开 展跟踪评价,查找不足,有针对性地提出改进措施,逐步实现城市空气质量达 标。

随着以上各项政策的逐步落实,荆州市沙市区可吸入颗粒物(PM_{10})、细颗粒物($PM_{2.5}$)大气污染将逐步得到改善。

5.2.1.2 评价范围内环境空气质量调查

为了解项目所在区域环境空气质量状况,评价单位对拟建项目周围实地踏勘,根据《环境影响评价技术导则 大气环境》(HJ2.2-2008)要求,依据区域污染气象特点、本项目大气污染特征和项目周围环境敏感点情况,本项目委托武汉净澜检测有限公司对项目选址区域大气环境质量进行现场监测。其监测点位在项目选址地和项目选址地主导下风向,监测时间为 2021 年 3 月 21 日~27日,连续 7 天。

(1) 监测点位

大气环境质量监测点位信息见下表。

± = 1	大气监测点位一览	#:
表 5-4	人气监测总位一见:	衣

序号	点位位置	坐标	
1	八司现方田地	30°20'55.84"N	
1	公司现有用地	公可现有用地 	112°20'32.36"E
2	 公司现有用地主导下风向 2#	30°20'35.55"N	
2	公可现有用地主守下风间 2# 	112°20'30.08"E	

(2) 监测因子与监测方法

监测因子为甲醇、氯化氢、非甲烷总烃、总挥发性有机物共4项监测项目,监测方法详见下表。

表 5-5 环境空气质量监测分析方法及方法来源

监测项目	分析方法及方法来源	仪器名称及编号	检出限	
甲醇	气相色谱法(GB 11738-89)	GC-2010Plus 气相色谱仪	0.17mg/m ³	
11, 由4	(相已值名 (GB 11736-69)	(JLJC-JC-005-05)	0.1 / Hig/III	
HC1	 离子色谱法(HJ 549-2016)	ICS900 离子色谱仪	0.02mg/m ³	
HCI		(JLJC-JC-025-01)	0.02mg/m²	
非甲烷总烃	气相色谱法(HJ 604-2017)	9790II 气相色谱仪 0.07		
- 非中灰心丘	(相色頃伝(HJ 004-2017)	(JLJC-JC-005-02)	0.07mg/m ³	
TVOC	气相色谱法(HJ/T 167-2004)	9790II 气相色谱仪	0.0005/3	
TVOC	(相色值法(HJ/I 107-2004)	(JLJC-JC-005-01)	0.0005mg/m^3	

(3) 监测时间及频率

甲醇、氯化氢、非甲烷总烃、总挥发性有机物监测日平均浓度监测,采样 时同步进行风向、风速等气象要素的观测。

(4) 评价方法

采用最大浓度占标率法对环境空气质量现状进行评价, 计算公式为:

$I_i=C_i/C_{Si}$

式中: I--第 i 个污染物的最大浓度占标率, %;

C.—污染物的监测值;

Csi—污染物的评价标准值。

当 I_i>100%时,则该污染物超标。

(5) 环境空气质量评价标准

该项目属于环境空气二类功能区,评价区特征污染物环境因子执行《环境影响评价技术导则 大气环境》(HJ2.2-2018)中附录 D 其他污染物空气质量浓度参考限值。

(6) 环境空气监测结果及分析

环境空气质量监测统计分析结果列于下表。

甲醇 HCl 点 位 范围值 最大浓度占标率 范围值 最大浓度占标 超标率 超标率 (mg/m^3) (%) (mg/m^3) 率(%) (%)(%)1# ND(0.17)0 ND(0.02)0 2# ND(0.17)0 ND(0.02)--0 非甲烷总烃 **TVOC** 点 位 范围值 最大浓度占标率 超标率 范围值 最大浓度占标 超标率 (mg/m^3) (%) (mg/m^3) 率(%) (%)(%)1# 0.98-1.52 0.76 0 0.104-0.337 0.28 0 2# 0.83-1.18 0.59 0 0.168-0.247 0.21 0

表 5-6 环境空气质量监测及评价一览表

由上表评价结果表明,评价区内监测点位监测因子均满足《环境影响评价 技术导则 大气环境》(HJ2.2-2018)中附录 D 相应标准要求。

5.2.2 地表水环境质量现状监测与评价

为了解长江(荆州城区段)水环境质量现状,本工程引用《湖北金科环保科技股份有限公司含镍铬铜锌污泥处置和再利用项目》现状监测结果,该项目与本工程同样进入荆州申联环境科技有限公司污水处理厂进行集中处理,其最终排放路径与本工程相同,引用其现状监测结果符合《环境影响评价技术导则地表水》(HJ2.3-2018)相关要求。

该项目委托湖北跃华检测有限公司于 2020年6月23日~6月25日对长江(荆州城区段) 水质进行了采样分析,具体监测内容如下:

(1) 监测布点

在长江(荆州城区段)评价水域内分设3个监测断面,位于开发区排江工程入长江排污口上游500m、排污口下游500m、排污口下游2500m,编号分别是1#、2#、3#。

(2) 监测项目

水温、pH、化学需氧量、五日生化需氧量、氨氮、总磷、溶解氧,共计7项,并调查水深、流速、水面宽度、流量。

(3) 采样时间和频率

连续采样3天,每天采样1次。

表 5-7 地表水环境现状监测断面一览表

水体名称	监测点位	经纬度	监测项目	监测频 次
	1#开发区排江工程排 污口上游 500m	112°17′12.39″E 30°14′4.47″N	水温、pH、化学需氧 量、五日生化需氧	1 1/4 / -
长江(荆州 城区段)	2#开发区排江工程排 汚口下游 500m	112°16′56.48″E 30°13′31.14″N	量、氨氮、总磷、溶解氧,并调查水深、	1 次/天, 监测 3
WE 127	3#开发区排江工程排	112°16′8.82″E	流速、水面宽度、流	天
	汚口下游 2500m	30°12′44.05″N	量	

(4) 监测分析方法

监测分析方法、依据及仪器设备详见下表。

表 5-8 地表水水质监测项目及分析方法一览表

			1.4. 1. 200
监测项目	监测方法及依据	分析仪器设备型号、编号	检出限
		为 仍 民間 民田 王 3、 斒 3	(mg/L)
水温 (℃)	温度计法	WQG-17 水温计	,
八価 (し)	(GB 13195-91)	(YHJC-CY-054-07)	/
	便携式 pH 计法	DID 4 F-14 - P DI 1	
pH(无量纲)	(《水和废水监测分析方法》	PHB-4 便携式 PH 计	/
7	(第四版增补版))	(YHJC-CY-014-01)	
1. 当录写具	重铬酸盐法	HCA-101 标准 COD 消解仪	4
化学需氧量	(HJ 828-2017)	(YHJC-JC-030-02)	4
		HI9147 溶解氧仪	
五日生化	稀释与接种法	(YHJC-JC-010-01)	0.5
需氧量	(HJ 505-2009)	HWS-80 恒温恒湿培养箱	0.5
		(YHJC-JC-023-01)	
复复	纳氏试剂分光光度法	721 可见分光光度计	0.025
氨氮	(HJ 535-2009)	(YHJC-JC-012-02)	0.025
冶 7米	钼酸铵分光光度法	721 可见分光光度计	0.01
总磷	(GB 11893-89)	(YHJC-JC-012-02)	0.01
	便携式溶解氧仪法	IDD (074 年推 + 浓烟 年 测点 い	
溶解氧	(《水和废水监测分析方法》	JPB-607A 便携式溶解氧测定仪	/
	(第四版增补版))	(YHJC-CY-015-01)	
冻'束 (_ / \	《水质 河流采样技术指导》	LS300-A 便携式流速测算仪	,
流速(m/s)	(HJ/T 52-1999)	(YHJC-CY-048-02)	/
流量 (m³/s)	《水质 河流采样技术指导》	LS300-A 便携式流速测算仪	,
·/ル里(m ⁻ /S)	(HJ/T 52-1999)	(YHJC-CY-048-02)	/

(5) 评价标准

长江(荆州城区段)水质执行《地表水环境质量标准》(GB3838-2002)中III类水域标准。

(6) 评价方法

①地表水评价采用单项水质标准指数法进行评价,其评价模式为:

$$S_{ij}=C_{ij}/C_{si}$$

式中: Sii——单项水质参数 i 在第 j 点标准指数;

 C_{ii} ——单项水质参数 i 在第 j 点监测值, mg/L;

Csi——单项水质参数 i 在第 j 点标准值, mg/L。

②pH 值评价模式为:

$$S_{pH, j} = \frac{7.0 - pH_{j}}{7.0 - pH_{sd}} pH_{j} \le 7.0$$

$$S_{pH, j} = \frac{pH_{j} - 7.0}{pH_{su} - 7.0} pH_{j} > 7.0$$

式中: SpH, i——pH 值在第 j 点标准指数;

pHi──第 j 点 pH 监测值;

pHsd——pH标准低限值;

pH_{su}——pH 标准高限值。

③DO值评价模式为:

$$S_{DO,j}= \mid DO_{f}-DO_{j} \mid /(DO_{f}-DO_{s}) \quad DO_{j} \ge DO_{s}$$

 $S_{DO,j}=10-9DO_{j}/DO_{s} \quad DO_{j} \le DO_{s}$

其中: Spo. i—DO 的标准指数;

 DO_f —某水温、气压条件下的饱和溶解氧浓度,mg/L,计算公式常采用: DO_f =468/(31.6+T),T 为水温, \mathbb{C} ;

DO:—溶解氧实测值, mg/L;

DOs—溶解氧的水质评价标准限值, mg/L。

水质参数的标准指数>1,表明该水质参数超过了规定的水质标准,已经不能满足使用要求。标准指数越大,污染程度越重;标准指数越小,说明水体受污染的程度越轻。

(7) 监测结果及评价

长江地表水调查结果见表5-10,监测结果及其评价指数分析内容详见表5-11。

表 5-9 长江(荆州城区段)地表水调查结果一览表

			检测结果	₹(mg/L)	
检测点位	检测日期	水深(m)	流速(m/s)	水面宽度 (m)	流量 (m³/s)
1// 开华豆果次子和	2020.6.23	15.30	1.23	1452	27325
1# 开发区排江工程 排污口上游 500m	2020.6.24	15.30	1.24	1452	27547
1年4万 14 上初 300m	2020.6.25	15.30	1.20	1452	26659
2// 开华豆排次了和	2020.6.23	15.20	1.31	1364	27160
2# 开发区排江工程 排污口下游 500m	2020.6.24	15.20	1.34	1364	27782
141.2 1 1.401.200III	2020.6.25	15.20	1.28	1364	26538
211 开华区州次了和	2020.6.23	18.62	1.42	1012	26758
3# 开发区排江工程 排污口下游 2500m	2020.6.24	18.62	1.44	1012	27135
	2020.6.25	18.62	1.43	1012	26946

表 5-10 项目地表水环境质量评价单项因子标准指数

检测	 检测日期			检测结	幂(mg/L)		
点位	1坐75月 口 5月	水温(℃)	pH(无量纲)	COD	氨氮	总磷	BOD ₅	DO
14 正史	2020.6.23	26.4	7.98	10	0.144	0.14	2.9	7.34
1# 开发 区排江	2020.6.24	27.4	7.83	12	0.171	0.12	2.8	7.29
C1F4 工程排	2020.6.25	27.2	7.86	10	0.156	0.14	2.4	7.34
上作	平均值	27.0	7.83~7.98	10.67	0.157	0.13	2.70	7.32
游 500m	标准值(III类)	/	6~9	20	1	0.2	4	5
初于 300III	Si	/	0.415~0.49	0.53	0.157	0.67	0.68	0.22
2// 17/42	2020.6.23	26.8	7.86	18	0.237	0.18	3.9	7.39
2# 开发	2020.6.24	27.8	7.89	13	0.225	0.17	3.6	7.26
┃ 区排江 ┃ 工程排	2020.6.25	27.5	7.81	16	0.211	0.18	3.8	7.29
上作形	平均值	27.4	7.81~7.89	15.67	0.224	0.18	3.77	7.31
游 500m	标准值(III类)	/	6~9	20	1	0.2	4	5
100111	Si	/	0.405~0.445	0.78	0.224	0.88	0.94	0.21
3# 开发	2020.6.23	25.7	7.73	13	0.197	0.16	3.4	7.53
区排江	2020.6.24	27.1	7.61	11	0.185	0.15	3.2	7.31
工程排	2020.6.25	27.4	7.63	12	0.204	0.16	3.1	7.31
汚口下	平均值	26.7	7.61~7.73	12.00	0.195	0.16	3.23	7.38
游	标准值(III类)	/	6~9	20	1	0.2	4	5
2500m	Si	/	0.305~0.365	0.60	0.195	0.78	0.81	0.212

由上表可知,长江(荆州城区段)的水质监测项目pH、COD、BOD₅、氨氮、总磷等因子标准指数均小于1,说明长江(荆州城区段)评价江段现状水质均能满足《地表水环境质量标准》(GB3838-2002)III类标准的要求。

5.2.3 声环境现状监测与评价

湖北仁源检测有限公司于 2021 年 4 月 7 日至 8 日连续 2 天对项目场界噪声进行了现状监测,共设置 4 个噪声监测点,分别位于东、南、西、北厂界各布 1 个监测点,连续监测 2 天,每天昼、夜间各 1 次。

监测统计结果见表 5-11。

测点 结果 监测点位置 主要声源 监测时段 标准限值 达标评价 编号 (Leq) 2021年4 达标 昼间 54 65 厂界东外 1m 月7日 夜间 50 55 达标 环境噪声 1 处▲1# 2021年4 昼间 54 65 达标 月8日 夜间 49 55 达标 2021年4 昼间 53 65 达标 49 厂界南外 1m 月7日 夜间 55 达标 环境噪声 2 处▲2# 2021年4 昼间 53 65 达标 月8日 夜间 49 55 达标 2021年4 54 昼间 达标 65 厂界西外 1m 月7日 夜间 50 55 达标 环境噪声 3 处▲3# 2021年4 昼间 54 65 达标 月8日 夜间 50 55 达标 2021年4 昼间 58 65 达标 厂界北外 1m 月7日 夜间 54 55 达标 环境噪声 4 处▲4# 昼间 达标 2021年4 58 65

表 5-11 项目噪声现状监测结果统计一览表 单位: dB(A)

由表中监测结果可以看出,项目厂界四周的噪声均能达到《声环境质量标准》(GB3096-2008)中3类标准,项目所在区域声环境质量现状满足环境功能区划要求。

夜间

54

达标

55

月8日

5.2.4 地下水环境质量现状调查及评价

为了解项目选址区域地下水环境质量现状,本项目委托武汉净澜检测有限 公司对项目选址区域地下水环境质量进行现场监测。

(1) 监测点位

本次地下水监测在厂外右侧 1#、上游 2#、厂内 3#、厂界左侧 4#、下游 5#和下游 6#各设置 1 个监测点位,共计 6 各监测点位。地下水监测点位信息见表 5-12。

	77.0	10 /1 · mm /1 /11 m m m m m m m m m	
采样地点	经纬度	监测项目	监测频次
项目建设用地	30°21' 05.42"N		
监测井	112°20' 38.04"E		
公司用地上游	30°21' 37.16"N	·II 佐 克经验补比粉 复心物 复儿物	
监测井	112°20' 17.29"E	pH 值、高锰酸盐指数、氟化物、氯化物、 硝酸盐、硫酸盐、氨氮、亚硝酸盐、挥	
公司用地东侧	30°21' 04.26"N	发性酚类、汞、砷、铬(六价)、总硬	
监测井	112°22' 05.65"E	度、氰化物、铅、镉、铁、锰、溶解性	1 次/天
公司用地西监	30°20' 37.65"N	总固体、碳酸根离子、碳酸氢根离子、	监测1天
测井	112°19' 34.17"E	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	
公司用地下游	30°19' 41.73"N	大肠菌群、菌落总数	
1#监测井	112°19' 58.48"E	/\/// 四和\\ 图借心致	
公司用地下游	30°19' 21.19"N		
2#监测井	112°19' 56.49"E		

表 5-12 地下水监测点位信息一览表

(2) 监测因子及采样、分析方法

根据《地下水质量标准》(GB/T4848-2017)中的III类标准的原则和要求,并根据本项目的实际情况,确定地下水监测因子为钾、钠、钙、镁、碳酸盐、碳酸氢盐、氯化物、硫酸盐、pH、氨氮、硝酸盐、亚硝酸盐、挥发性酚类、氰化物、砷、汞、铬(六价)、总硬度、铅、氟化物、镉、铁、锰、溶解性总固体、耗氧量、总大肠菌群、细菌总数,共计27项。并调查水位。

采样及分析方法、监测频次均按国家有关规定进行。监测因子及采样、分析方法详见下表。

检测类别	检测项目	分析方法及方法来源	仪器名称及编号	检出限
	钾	离子色谱法	阳离子色谱 CICI-D100	0.02mg/L
		(HJ 812-2016) 离子色谱法	(YHJC-JC-024-02) 阳离子色谱 CICI-D100	
	钙	(HJ 812-2016)	(YHJC-JC-024-02)	0.03mg/L
	镁	离子色谱法	阳离子色谱 CICI-D100	0.02mg/L
HH T →V	· · · · · · · · · · · · · · · · · · ·	(HJ 812-2016)	(YHJC-JC-024-02)	0.02111g/L
地下水		便携式 pH 计法	SX-620 便携式 pH 计	/
	pН	(《水和废水监测分析方	(YHJC-CY-014-05)	/
	pm	法》	SX-620 便携式 pH 计	/
		(第四版增补版))	(YHJC-CY-014-03)	/
		离子色谱法	CICI-D100 离子色谱	
	硫酸盐	两丁巴语法 (HJ 84-2016)	(阴)	0.018mg/L
		(ПJ 04-2010)	(YHJC-JC-024-01)	

表 5-13 地下水水质监测因子及分析方法一览表

氯化物	离子色谱法	CICI-D100 离子色谱 (阴)	0.007mg/L		
录(化初	(HJ 84-2016)	(YHJC-JC-024-01)	0.007mg/L		
	萃取分光光度法	721 可见分光光度计			
挥发酚	(HJ 503-2009)	(YHJC-JC-012-02)	0.0003mg/L		
		HH-SA6 数显恒温水浴			
耗氧量	容量法	锅	0.05mg/L		
	(GB/T 5750.7-2006(1.1))	(YHJC-JC-016-02)	C		
FF	纳氏试剂分光光度法	721 可见分光光度计	0.02 /7		
氨氮	(GB/T 5750.5-2006(9.1))	(YHJC-JC-012-02)	0.02mg/L		
5th	离子色谱法	CICI-D100 阳离子色谱	0.02 1/1		
钠	(HJ 812-2016)	(YHJC-JC-024-02)	0.02mmol/L		
亚硝酸盐	重氮偶合分光光度法	721 可见分光光度计			
(以 N	(GB/T 5750.5-2006	(YHJC-JC-012-02)	0.001mg/L		
计)	(10.1)	(I IIJC-JC-012-02)			
硝酸盐	离子色谱法	CICI-D100 离子色谱			
(以 N	内 J 凸 旧 石 (HJ 84-2016)	(阴)	0.016mg/L		
计)	(11) 04-2010)	(YHJC-JC-024-01)			
	离子色谱法	CICI-D100 离子色谱	0.006mg/L 0.00004mg/L		
氟化物	(HJ 84-2016)	(阴)			
	(113 04-2010)	(YHJC-JC-024-01)			
	原子带光法	AFS-8510 原子荧光光	0.00004mg/L		
汞		原子荧光法 度计 0.00			
	(11) 074 20147	(YHJC-JC-026-02)			
	原子荧光法	AFS-8510 原子荧光光			
砷	(HJ 694-2014)				
		(YHJC-JC-026-02)	0.0003mg/L		
格 (六价)	二苯碳酰二肼分光光度法	721 可见分光光度计	0.004mg/L		
*H () ()	(GB/T 5750.6-2006(10.1))	(YHJC-JC-012-02)			
	石墨炉原子吸收光谱法	PinAAcle900H 火焰石			
铅	(GB/T 5750.6-2006(11.1))	墨炉原子吸收光谱仪	0.0025mg/L		
		(YHJC-JC-027-01)			
l=	石墨炉原子吸收光谱法	PinAAcle900H 火焰石			
镉	(GB/T 5750.6-2006(9.1))	墨炉原子吸收光谱仪	0.0005mg/L		
) + 4 T L L V	. ,	(YHJC-JC-027-01)			
溶解性总	重量法	GL124-1SCN 电子天平			
固	(GB/T 5750.4-2006(8.1))	(万分之一)赛多利斯	4mg/L		
体	` ,	(YHJC-JC-004-01)			
F.H.	电感耦合等离子体发射光	Optima8300 电感耦合等	0.0045 /5		
铁	谱法	离子提发射光谱仪	0.0045mg/L		
	(GB/T 5750.6-2006(1.4))	(YHJC-JC-003-01)			
锰	电感耦合等离子体发射光	Optima8300 电感耦合等	0.0005mg/L		
	谱法	离子提发射光谱仪			

	(GB/T 5750.6-2006(1.4))	(YHJC-JC-003-01)		
总硬度	容量法	50mL 无色聚四氟乙烯	1.0mg/L	
心灰/文	(GB/T 5750.4-2006(7.1))	滴定管	1.0Hig/L	
碳酸氢盐	容量法	25mL 无色聚四氟乙烯	5mg/L	
恢 段 全 (血	(DZ/T 0064.49-1993)	滴定管	Jilig/L	
碳酸盐	容量法	25mL 无色聚四氟乙烯	5mg/L	
19火段 血	(DZ/T 0064.49-1993)	滴定管	Jilig/L	
	异烟酸-吡唑啉酮分光光度	721 可见分光光度计		
氰化物	法	(YHJC-JC-012-02)	0.002mg/L	
	(GB/T 5750.5-2006(4.1))	(1111C-JC-012-02)		
总大肠菌	多管发酵法	SPX250 生化培养箱	<	
群	(GB/T 5750.12-2006(2.1))	(YHJC-JC-023-04)	2MPN/100mL	
细菌总数	平皿计数法	SPX250 生化培养箱	,	
知图心数	(GB/T 5750.12-2006(1.1))	(YHJC-JC-023-04)	/	

(3) 监测时间及频率、评价方法

2021年3月22日采样一次。

地下水环境质量现状评价方法拟采取与地表水单项水质参数评价方法相同 的单项组分评价法进行评价对比,以此来判定地下水环境质量状况。

(4) 监测结果与评价结果

监测结果和各点位污染物单项标准指数见下表。

表 5-14 地下水水质监测结果一览表 单位: mg/L

监	测时间			3月:	22 日		
监测点位		项目建 设用地 监测井	公司用 地上游 监测井	公司用 地东侧 监测井	公司用 地西监 测井	公司用 地下游 1#监测 井	公司用 地下游 2#监测 井
	рН	7.65	7.59	7.74	7.71	7.65	7.62
	高锰酸盐指 数	2.98	3.53	2.99	3.00	2.64	3.36
	氟化物	0.144	0.179	0.190	0.195	0.173	0.235
	氯化物	9.63	18.5	18.2	18.3	18.3	18.4
监测结	硝酸盐	ND	ND	ND	ND	ND	ND
果 mg/L	硫酸盐	2.71	0.255	0.189	0.296	0.110	0.217
	氨氮	0.23	0.16	0.15	0.17	0.06	0.20
	亚硝酸盐	0.014	ND	ND	ND	0.004	ND
	挥发性酚类	ND	ND	ND	ND	ND	ND
	汞	ND	ND	ND	ND	ND	ND
	砷	0.0006	0.0004	0.0006	0.0005	0.0006	0.0006

铬(六价)	ND	ND	ND	ND	ND	ND
总硬度	434	403	325	353	365	350
氰化物	ND	ND	ND	ND	ND	ND
铅	ND	0.00016	0.00010	ND	ND	ND
镉	0.00012	0.00016	0.00010	0.00012	0.00011	0.00009
铁	0.11	0.04	0.05	0.05	0.07	0.06
锰	0.09	0.07	0.08	0.07	0.07	0.06
溶解性总固 体	530	518	484	468	508	588
碳酸根离子	ND	ND	ND	ND	ND	ND
碳酸氢根离 子	415	350	345	343	345	325
钾离子	0.901	0.624	0.690	0.590	0.588	0.680
钠离子	38.2	37.0	37.1	37.4	37.4	37.4
钙离子	86.7	78.6	68.7	71.6	75.8	71.2
镁离子	16.0	12.9	12.6	12.7	12.5	12.6
总大肠菌群	<2	<2	<2	<2	<2	<2
细菌总数	40	59	45	86	80	62

表 5-15 地下水水质评价结果一览表

			• •		14/14/2/ 11				
点					评价结果				
^点 位	рН	高锰酸	氟化物	氯化物	硝酸盐	硫酸盐	氨氮	亚硝酸	挥发性
	1	盐指数	7, 7, - 7, 7				- 1,2,1	盐	酚类
1#	0.575	/	0.144	0.0385	/	0.0108	0.46	0.014	/
2#	0.545	/	0.179	0.074	/	0.0010	0.32	/	/
3#	0.62	/	0.190	0.0728	/	0.0008	0.30	/	/
4#	0.605	/	0.195	0.0732	/	0.0012	0.34	/	/
5#	0.575	/	0.173	0.0732	/	0.0004	0.12	0.004	/
6#	0.56	/	0.235	0.0736	/	0.0009	0.40	/	/
点					评价结果				
位	汞	砷	铬 (六 价)	总硬度	氰化物	铅	镉	铁	锰
1#	/	0.06	/	0.964	/	/	0.024	0.3667	0.9
2#	/	0.04	/	0.896	/	0.016	0.032	0.1333	0.7
3#	/	0.06	/	0.722	/	0.010	0.02	0.1667	0.8
4#	/	0.05	/	0.784	/	/	0.024	0.1667	0.7
5#	/	0.06	/	0.811	/	/	0.022	0.2333	0.7
6#	/	0.06	/	0.778	/	/	0.018	0.2	0.6
占					评价结果				
点位	溶解性	碳酸根	碳酸氢	畑南乙	抽 南 <i>乙</i>	年 南 <i>乙</i>	学 南 <i>了</i>	总大肠	细菌总
11/	总固体	离子	根离子	钾离子	钠离子	钙离子	镁离子	菌群	数
1#	0.53	/	/	/	/	/	/	0.66	0.40

2#	0.518	/	/	/	/	/	/	0.66	0.59
3#	0.484	/	/	/	/	/	/	0.66	0.45
4#	0.468	/	/	/	/	/	/	0.66	0.86
5#	0.508	/	/	/	/	/	/	0.66	0.80
6#	0.588	/	/	/	/	/	/	0.66	0.62

对照《地下水质量标准》(GB/T14848-2017)III类限值,本次调查范围内的监测点位各监测因子均达到III类标准限值。说明项目选址区域地下水水质现状总体较好,地下水水质基本满足《地下水质量标准》(GB/T14848-2017)III类限值。

(5) 包气带监测

监测点位:包气带监测在项目建设用地(采样深度为 0-0.2m)设置 1 个监测点位。

监测项目: pH、化学需氧量、氨氮、氯化物、挥发酚、硫化物、石油类、 氟化物,共计 8 项。

监测时间及频次: 2021年3月22日采样一次监测结果见下表。

监测结果 监测点位 监测时间 监测项目 评价结果 pH (无量纲) 7.65 0.575 化学需氧量 6 / 0.23 0.46 氨氮 2021年3月22 氯化物 9.63 0.0385 污水站附近 1# H 挥发酚 ND 硫化物 ND / 石油类 ND 氟化物 0.144 0.144

表 5-16 包气带监测结果一览表 单位: mg/L

对照《地下水质量标准》(GB/T14848-2017)III类限值,厂区包气带各监测因子均达到III类标准限值,说明公司现有工程对地下水环境影响较小。

5.2.5 土壤环境质量现状调查及评价

根据《环境影响评价技术导则-土壤环境》(HJ964-2018)的要求,项目为污染影响型项目,评级工作等级为二级。为进一步了解项目厂区土壤环境质量现状,在厂区范围内监测了3个柱状样点、1个表层样点,在厂区范围外监测了2个表层样点。本评价委托武汉净澜检测有限公司对6个点位进行了监测。

(1) 监测布点

本次土壤监测在厂外 1#(采样深度为 0-0.2m)、厂外 2#(采样深度为 0-0.2m)、污水处理站 3#(采样深度为 0-0.5m、0.5-1.5m、1.5-3.0m)、甲类储罐区附近 4#(采样深度为 0-0.5m、0.5-1.5m、1.5-3.0m)、项目建设地点附近 5#(采样深度为 0-0.5m、0.5-1.5m、1.5-3.0m)和厂内 6#(采样深度为 0-0.2m)各设 1 个监测点位,共计 6 个监测点位。监测布点见下表。

采样地点	经纬度	监测项目	采样深度
污水处理 站	30°20' 57.04"N 112°20' 43.34"E	pH、砷、镉、铜、铅、镍、汞、六价	0-0.5m\ 0.5-1.5m\ 1.5-3.0m
甲类储罐	30°20' 57.02"N 112°20' 39.54"E	\$\ \text{Max}\ldot\kappa\kapp	0-0.5m\ 0.5-1.5m\ 1.5-3.0m
项目建设 地点	30°21' 07.07"N 112°20' 37.76"E	二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、 1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、	0-0.5m\ 0.5-1.5m\ 1.5-3.0m
项目建设 地点	112°19′35.68″E 30°14′54.23″N	氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、	0-0.2m
项目选址 地 200m 范 围 1 号点	30°20' 53.07"N 112°20' 45.13"E	邻二甲苯、半硝基苯、苯胺、2-氯酚、 苯并[a]蒽、苯并[a]芘、苯并[b]荧蒽、 苯并[k]荧蒽、菌、二苯并[a,h]蒽、茚	0-0.2m
项目选址 地 200m 范 围 2 号点	30°21' 02.04"N 112°20' 25.84"E	并[1,2,3-cd]芘、萘	0-0.2m

表 5-17 土壤监测布点

(2) 监测项目、频次及分析方法

监测因子: pH、砷、镉、铜、铅、镍、汞、六价铬、四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯、半硝基苯、苯胺、2-氯酚、苯并[a]蒽、苯并[a]克、苯并[b]荧蒽、苯并[k]荧蒽、菌、二苯并[a,h]蒽、茚并[1,2,3-cd]克、萘。

监测时间: 2021年3月23日监测1天, 采样1次。

监测因子及采样、分析方法详见下表。

表 5-18 土壤监测因子监测分析方法一览表

类别		检测项目	检测方法	检测仪器及编号	检出限	
	p	bH(无量纲)	电位法 (HJ 962-2018)	PHS-3C 型 pH 计 (YHJC-JC-007-01)	/	
		HJ 680-2013 土壤和沉积 积物 汞、砷、硒、铋、 锑的测定 微波消解/原子荧光法		AFS-2202E 双道原 子荧光分光光度计 (STT-FX084)	0.01mg/kg	
		汞	GB/T 22105.1-2008 土 壤质量 总汞、总砷、总 铅的测定 原子荧光法 第1部分	AFS-2202E 双道原 子荧光分光光度计 (STT-FX084)	0.002mg/kg	
上, 4帝		铅	GB/T 17141-1997 土壤 质量 铅、镉的测定 石 墨炉原子吸收分光光度 法	TAS-990AFG 原子吸收分光光度 计(STT-FX004)	0.1mg/kg	
土壤一		镉	GB/T 17141-1997 土壤 质量 铅、镉的测定 石 墨炉原子吸收分光光度 法	TAS-990AFG 原子吸收分光光度 计(STT-FX004)	0.01mg/kg	
		铜	GB/T 17138-1997 土壤 质量 铜、锌的测定 火 焰原子吸收分光光度法	TAS-990AFG 原子吸收分光光度 计(STT-FX004)	1mg/kg	
		GB/T 17139-1997 土 镍 质量 镍的测定 火炸 原子吸收分光光度污		TAS-990AFG 原子吸收分光光度 计(STT-FX004)	5mg/kg	
		六价铬	HJ 687-2014 固体废物 六价铬的测定 碱消解/ 火焰原子吸收分光光度 法	TAS-990AFG 原子吸收分光光度 计(STT-FX004)	5mg/kg 2mg/kg	
		四氯化碳			0.0013mg/k	
	挥	氯仿			0.0011mg/k g	
	发 性	氯甲烷	HJ 605-2011 土壤和沉 积物 挥发性有机物的	GCMS-QP2010PLU	0.0010mg/k g	
土壌	有机	1,1-二氯乙烷	测定 吹扫捕集/气相色谱-质谱法	S 气相色谱质谱联 用仪(STT-FX112)	0.0012mg/k	
	物	1,2-二氯乙烷			0.0013mg/k g	
		1,1-二氯乙烯			0.0010mg/k g	

		顺-1,2-二氯乙烯			0.0013mg/k
		700 1,2 — an C 711			g
		反-1,2-二氯乙烯			0.0014mg/k
					g
		二氯甲烷			0.0015mg/k
					g 0.0011mg/k
		1,2-二氯丙烷			g g
		1,1,1,2-四氯乙			0.0012mg/k
		烷			g
		1,1,2,2-四氯乙			0.0012mg/k
		烷			g
		皿気フ格			0.0014mg/k
		四氯乙烯			g
		1,1,1-三氯乙烷			0.0013mg/k
		1,1,1			g
		 1,1,2-三氯乙烷			0.0012mg/k
		1,1,2			g
		三氯乙烯			0.0012mg/k
					g
		1,2,3-三氯丙烷			0.0012mg/k
					g
		氯乙烯			0.0010mg/k
					g 0.0010/1-
		苯			0.0019mg/k
					g 0.0012mg/k
		氯苯			_
					g 0.0015mg/k
		1,2-二氯苯			g g
					0.0015mg/k
		1,4-二氯苯			g
		→ ++·			0.0012mg/k
		乙苯			g
		サフル			0.0011mg/k
		苯乙烯			g
		甲苯			0.0013mg/k
		11.4			g
		 间,对二甲苯			0.0012mg/k
		1/37 //3 1 /#			g
		邻二甲苯			0.0012mg/k
					g
土壤	半	硝基苯	HJ 834-2017 土壤和沉	GCMS-QP2010PLU	0.09mg/kg

挥	苯胺	积物 半挥发性有机物	S气相色谱质谱联	0.06mg/kg
发性	苯并[a]蒽	的测定 气相色谱法-质 谱法	用仪(STT-FX112)	0.1mg/kg
古	苯并[a]芘	旧1公		0.1mg/kg
机	苯并[b]荧蒽			0.2mg/kg
物	苯并[k]荧蒽			0.1mg/kg
	崫			0.1mg/kg
	二苯并[a, h]蒽			0.1mg/kg
	茚并[1,2,3-cd]芘			0.1mg/kg
	萘			0.09mg/kg
	2-氯酚			0.06mg/kg

(3) 评价标准

《土壤环境质量标准建设用地土壤污染风险管控标准(试行)》 (GB36600-2018)中建设用地土壤污染风险筛选值进行评价。

(4) 评价方法

采用污染物单项指数法对厂区土壤现状进行评价。

(5) 评价结果

所在区土壤分别按《土壤环境质量 建设用地土壤污染风险管控标准》 (GB36600-2018)表1基本项目第二类用地风险筛选值评价。开发区评价区域 内各监测点土壤监测统计结果见下表。

表 5-19 土壤监测结果统计表

业	玄测点位		项目选址 地 200m 范 围 2 号点		污水处理站	1		甲类储罐区		Ŋ	项目选址 地		
采	· · · · · · · · · · · · · · · · · · ·	0-0.2m	0-0.2m	0-0.5m	0.5-1.5m	1.5-3.0m	0-0.5m	0.5-1.5m	1.5-3.0m	0-0.5m	0.5-1.5m	1.5-3.0m	0-0.2m
	рН	8.18	8.14	7.82	8.15	8.34	7.63	8.03	7.82	8.05	8.11	8.17	8.20
	砷	14.8	10.1	12.3	8.24	7.33	6.82	14.4	11.5	14.1	15.1	8.63	11.3
	镉	0.36	0.24	0.29	0.13	0.15	0.29	0.24	0.20	0.37	0.38	0.29	0.33
	六价铬	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	铜	45	20	50	38	22	24	18	16	27	20	16	24
	铅	55.4	41.3	48.1	38.2	35.4	51.2	45.0	40.1	58.8	41.6	36.8	43.2
监测结果 (mg/kg)	汞	0.151	0.107	0.114	0.089	0.078	0.075	0.077	0.120	0.112	0.153	0.094	0.115
(mg/kg)	镍	22	24	35	31	18	43	30	16	41	28	23	34
	四氯化碳	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	氯仿	0.217	0.202	0.241	0.168	0.216	0.149	0.212	0.212	0.197	0.217	0.230	0.210
	氯甲烷	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1,1-二氯乙烷	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1,2-二氯乙烷	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

1,1-二氯乙烯	ND	0.011	ND	ND								
顺-1,2-二氯乙烯	ND											
反-1,2-二氯乙烯	ND											
二氯甲烷	0.0038	0.0034	0.0039	0.0038	0.0038	0.0039	0.0036	0.0034	0.0037	0.0037	0.0040	0.0019
1,2-二氯丙烷	ND											
1,1,1,2-四氯乙烷	ND											
1,1,2,2-四氯乙烷	ND											
四氯乙烯	ND											
1,1,1-三氯乙烷	ND											
1,1,2-三氯乙烷	0.0026	0.0025	ND	ND	ND	ND	ND	ND	0.0016	ND	ND	0.0017
三氯乙烯	ND											
1,2,3-三氯丙烷	ND											
氯乙烯	ND											
苯	ND											
氯苯	ND											
1,2-二氯苯	ND											
1,4-二氯苯	ND											

乙苯	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
苯乙烯	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
甲苯	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
间二甲苯+对二甲苯	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
邻二甲苯	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
硝基苯	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
苯胺	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-氯酚	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
苯并[a]蒽	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
苯并[a]芘	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
苯并[b]荧蒽	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
苯并[k]荧蒽	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
崫	0.2	0.3	ND	0.4	ND							
二苯并[a,h]蒽	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
茚并[1,2,3-cd]芘	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
萘	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

根据监测结果,项目监测及引用的各项土壤指标均低于《土壤环境质量标准建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地土壤污染风险筛选值和管控值,项目所在区域土壤污染风险较低,土壤环境质量良好。

5.3 环境保护目标调查

5.3.1 公司周边环境保护目标分布情况

确定项目所在地周边半径 2.5km 评价范围内居民区敏感目标为重点调查目标。经我单位相关工作人员的现场调查走访,调查详情见表 1-18。

5.3.2 环境保护目标环境质量现状

根据环境质量现状调查与评价内容,环境保护目标环境质质量现状列入下表:

表 5-20 环境保护目标环境质量现状一览表

			特征			环境质
环境要素	保护目标	方位	最近 距离 (m)	规模	执行标准	量现状 达标情 况
环境空气	半径为 2.5km 的 圆形范围内环境 敏感目标	/	/	/	GB3095-2012《环境空气质量标准》二级标准 HJ 2.2 -2018《环境影响评价技术导则大气环境》附录 D 其他污染物空气质量浓度参考限值要求	达标
地表水环境	长江(荆州城区 段)	W	1600	大河	GB3838-2002《地表 水环境质量标准》III 类水域标准	达标
声环境	厂界四周	/	200	/	GB3095-2008《声环 境质量标准》3 类区 标准	达标
地下水环境	选址为中心约 6km ² 范围内环境 敏感目标	/	/	/	GB/T14848-2017《地 下水质量标准》III类 标准	达标
土壤	项目选址区域	/	/	/	《土壤环境质量 建设 用地土壤污染风险管	达标

	控标准》
	(GB36600-2018) 表 1
	基本项目第二类用地
	风险筛选值

5.3.3 其它环境保护目标

经实地调查走访,本次大气环境影响评价范围内无风景名胜区及历史文化 古迹,无古树名木及国家保护动植物。

经实地调查走访,本次地表水环境影响评价范围内(开发区排江工程排污管入长江口上游 500m 至下游 5000m 的地表水域范围,开发区排江工程排污口至其下游 5km 处,该区域长江荆州城区段水功能区划为 III 类水体。开发区排江工程排污口至下游 II 类水体边界(观音寺断面)距离为 5.8592km)无国家自然保护区、集中式生活饮用水源取水口、珍稀水生生物栖息地、鱼虾类产卵场、仔稚幼鱼的索饵场、鱼虾类越冬场、泅游通道、水产养殖区等保护目标。项目废水通过排江工程排放,柳林水厂取水口位于排江工程排污口上游约 7km 处。

5.4 园区污染源调查

湖北江瀚新材料股份有限公司位于荆州市沙市化工园区,根据《荆州市沙市化工园区控制性详细规划》,园区内目前仅有湖北江瀚新材料股份有限公司和荆州市八方电镀化工有限公司了两家公司。根据《荆州市沙市化工园区控制性详细规划环境影响报告书》内容,园区现有污染源情况列入下表。

企业名称 序号 项目 荆州市八方电镀 湖北江瀚新材料 股份有限公司 化工有限公司 生活垃圾 33 8.25 1 固体废弃物(t/a) 一般固废 0 1630 危险废物 17.34 5.58 废水 (m³/a) 172417 30560 COD(t/a)8.621 2.44 氨氮(t/a) 0.8621 Cr^{6+} (kg/a) 1.22 2 废水及污染物排放量 总铬 (kg/a) 19.8 总铜 (kg/a) 12.084 总锌 (kg/a) 46.613 总镍(kg/a) 24.244

表 5-21 园区现有企业污染物源强

		SO ₂ (t/a)		
		NO_2 (t/a)		
2	废气污染物排放量	HCl (t/a)		1.47
] 3	及「行衆物計以里	铬酸雾(t/a)		0.0004
		硫酸雾(t/a)		0.288
		VOC (t/a)	4.91	0.29

6 环境影响预测与评价

6.1 营运期环境影响预测评价

6.1.1 大气环境影响预测评价

6.1.1.1 区域污染气象特征分析

6.1.1.1.1 气象概况

项目采用的是荆州气象站(57476)资料,气象站位于湖北省荆州市,地理 坐标为东经 112.1481 度,北纬 30.3502 度,海拔高度 31.8 米。气象站始建于 1953 年,1953 年正式进行气象观测。

荆州气象站距项目 11.66km, 是距项目最近的国家气象站, 拥有长期的气象观测资料, 以下资料根据 2000-2019 年气象数据统计分析。

荆州气象站气象资料整编表见下表。

表 6-1 荆州气象站常规气象项目统计(2000-2019)

	统计项目	*统计值	极值出现时间	**极值
	多年平均气温(℃)	17.1		
累	年极端最高气温(℃)	37.2	2003-08-02	38.7
累	年极端最低气温(℃)	-4.4	2011-01-03	-7.0
1	多年平均气压(hPa)	1011.9		
多	年平均水汽压(hPa)	16.7		
15	多年平均相对湿度(%)	76.5		
1	多年平均降雨量(mm)	1049.8	2013-09-24	140.1
京中	多年平均沙暴日数(d)	0.0		
灾害 天气	多年平均雷暴日数(d)	23.1		
统计	多年平均冰雹日数(d)	0.3		
シレバ	多年平均大风日数(d)	1.1		
多年实	测极大风速(m/s)、相应风 向	18.3	2006-04-12	22.8 NNE
1	多年平均风速(m/s)	2.0		
多年	主导风向、风向频率(%)	NNE 18.5%		
多年計	净风频率(风速<=0.2m/s)(%)	12.2		
	*统计值代表均值	举例: 累年极端	*代表极端最高气	**代表极端最
	**极值代表极端值	最高气温	温的累年平均值	高气温的累年

6.1.1.1.2 气象站风观测数据统计

(1) 月平均风速

荆州气象站月平均风速见下表,07月平均风速最大(2.3m/s),10月风最小(1.7m/s)。

表 6-2 荆州气象站月平均风速统计(单位 m/s)

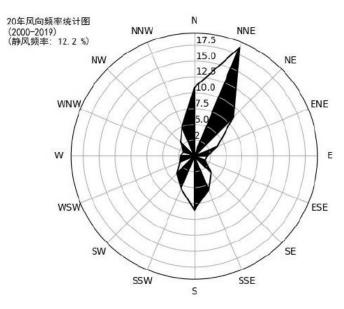
月	份	1	2	3	4	5	6	7	8	9	10	11	12
平均	凤速	1.9	2.0	2.1	2.1	2.0	1.9	2.3	2.1	2.0	1.7	1.7	1.8

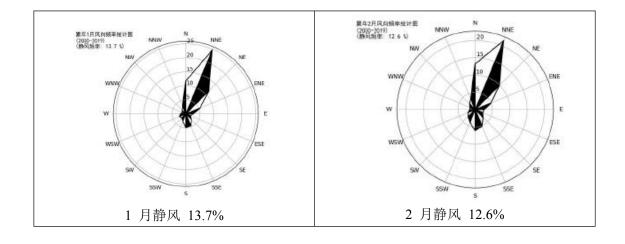
(2) 风向特征

近 20 年资料分析的风向玫瑰图如下图所示,荆州气象站主要风向为 NNE 和 C、N、NE,占 50.2%,其中以 NNE 为主风向,占到全年 18.5%左右。

表 6-3 荆州气象站年风向频率统计(单位%)

风向	N	NNE	NE	ENE	Е	ESE	SE	SSE	S
频率	10.8	18.5	8.7	3.9	2.0	1.8	3.7	5.8	8.5
风向	SSW	SW	WSW	W	WNW	NW	NNW	С	
频率	5.5	3.9	2.5	2.2	1.8	3.1	5.0	12	




图 6-1 荆州风向玫瑰图 (静风频率 12.2%)

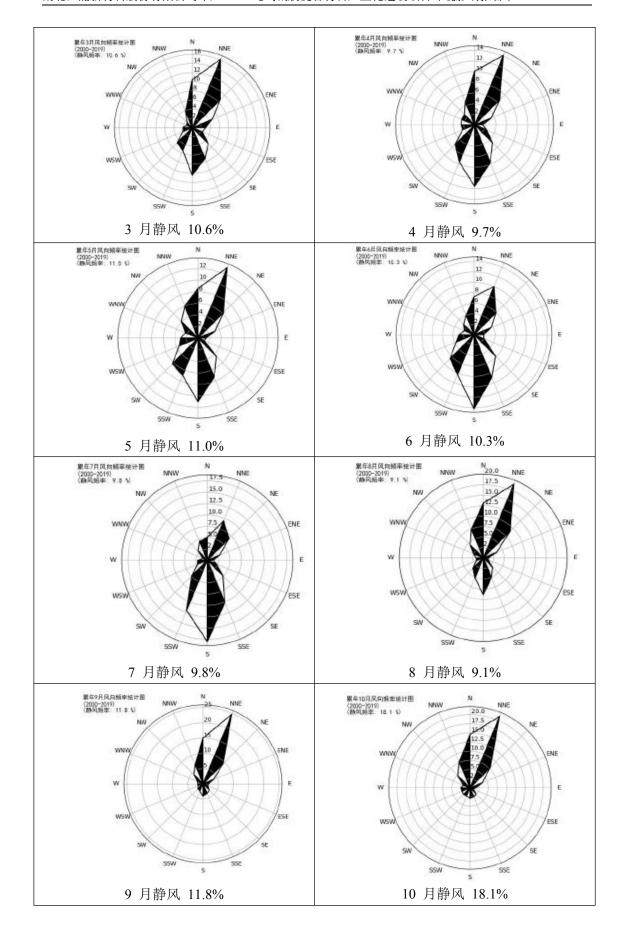

各月风向频率见下表。

表 6-4 荆州气象站月风向频率统计(单位%)

	月	N	NN	NE	EN	E	ES	SE	SS	ç	SS	S	WS	W	WN	N	NN	
ı	份	N	Е	NE	Е	E	Е	SE	Е	3	W	W	W	, vv	W	W	W	

0	11.	24.7	11.	5.5	2.	1.7	2.	4.6	4.9	2.8	2.1	2.5	1.	1.5	1.9	3.2	13.
1	8		6		7		8						9				7
0	13.	21.6	9.8	5.0	2.	2.4	3.	5.2	6.1	4.0	2.9	2.2	1.	1.7	2.3	3.5	12.
2	2				6		3						6				6
0	10.	16.2	8.7	4.7	2.	2.4	4.	7.3	10.	5.4	4.7	2.2	2.	1.4	1.6	3.9	10.
3	5				9		9		4				0				6
0	10.	14.2	6.7	3.4	1.	2.4	4.	7.7	11.	7.6	5.2	2.5	2.	2.7	2.7	4.6	9.7
4	1				5		8		6				6				
0	8.6	13.2	6.2	3.2	1.	1.2	4.	7.3	11.	7.0	6.3	3.5	3.	2.4	4.1	6.0	11.
5					4		5		0				0				0
0	7.3	10.0	5.9	3.6	1.	2.1	5.	8.9	14.	8.3	6.5	3.7	2.	2.0	2.8	4.0	10.
6					8		8		2				9				
0	5.1	9.4	6.8	2.9	1.	2.2	4.	10.	18.	12.0	4.9	2.3	2.	1.1	2.9	4.5	9.8
7					3		8	1	0				1				
0	13.	19.1	9.1	3.4	1.	1.2	3.	5.1	8.8	5.2	3.5	1.8	1.	2.5	4.4	7.4	9.1
8	1				2		2						7				
0	15.	24.7	9.3	3.8	1.	1.6	2.	3.4	4.2	2.6	2.4	1.8	1.	2.0	4.2	6.8	11.
9	0				8		9						8				8
1	14.	21.2	7.8	3.6	1.	0.9	2.	2.7	2.9	2.4	2.5	2.4	2.	2.0	4.7	7.7	18.
0	6				6		3						5				1
1	11.	24.0	9.4	4.0	2.	1.6	2.	4.2	4.3	4.3	2.3	2.5	2.	1.9	3.1	4.8	15.
1	4				3		7						2				1
1	9.1	23.8	13.	4.3	3.	1.8	2.	3.5	5.5	4.3	2.9	2.1	1.	0.9	2.9	3.3	15.
2			4		1		3						9				

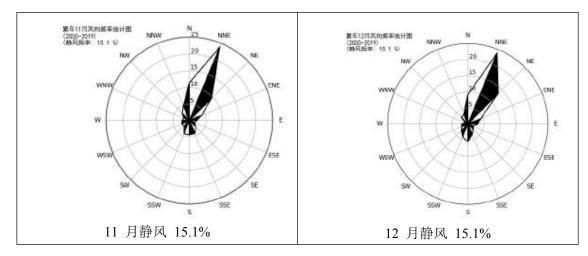


图 6-2 荆州月风向玫瑰图

(3) 风速年际变化特征与周期分析

根据近 20 年资料分析,荆州气象站风速无明显变化趋势,2005 年年平均风速最大(2.2m/s),2003 年年平均风速最小(1.7m/s),周期为 6~7 年。

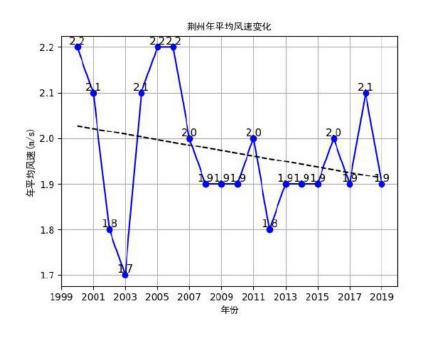


图 6-3 荆州(2000-2019)年平均风速(单位: m/s, 虚线为趋势线) 6.1.1.1.3 气象站温度分析

(1) 月平均气温与极端气温

荆州气象站 07 月气温最高(28.6℃),01 月气温最低(4.3℃),近 20 年极端最高气温出现在 2003-08-02(38.7℃),近 20 年极端最低气温出现在 2011-01-03(-7.0℃)。

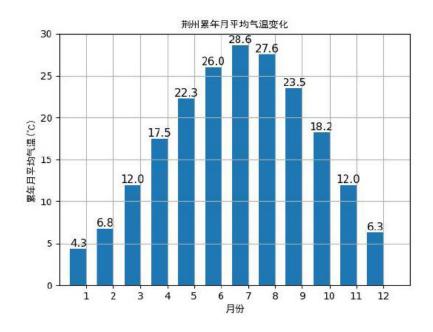


图 6-4 荆州月平均气温(单位:℃)

(2) 温度年际变化趋势与周期分析

荆州气象站近 20 年气温无明显变化趋势,2013 年年平均气温最高(17.6 $^{\circ}$),2005 年年平均气温最低(16.4 $^{\circ}$),无明显周期。

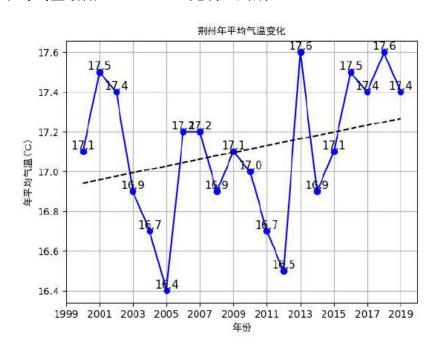


图 6-5 荆州 (2000-2019) 年平均气温 (单位: ℃, 虚线为趋势线)

6.1.1.1.4 气象站降水分析

(1) 月平均降水与极端降水

荆州气象站 06 月降水量最大 (155.9 毫米), 12 月降水量最小 (25.4 毫米), 近 20 年极端最大日降水出现在 2013-09-24 (140.1 毫米)。

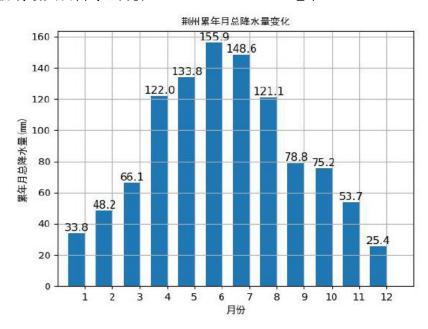


图 6-6 荆州月平均降水量(单位:毫米)

(2) 降水年际变化趋势与周期分析

荆州气象站近 20 年年降水总量无明显变化趋势, 2002 年年总降水量最大 (1500.4 毫米), 2019 年年总降水量最小 (806.4 毫米), 周期为 2-3 年。

图 6-7 荆州(2000-2019)年总降水量(单位:毫米,虚线为趋势线)

6.1.1.1.5 气象站日照分析

(1) 月日照时数

荆州气象站 07 月日照最长(204.6 小时), 02 月日照最短(83.9 小时)。

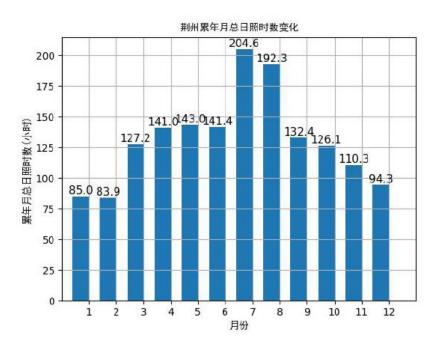


图 6-8 荆州月日照时数(单位:小时)

(2) 日照时数年际变化趋势与周期分析

荆州气象站近 20 年年日照时数呈现上升趋势,每年上升 12.12%,2013 年年日照时数最长(1977.0 小时),2003 年年日照时数最短(1382.8 小时),周期为 3-4 年。

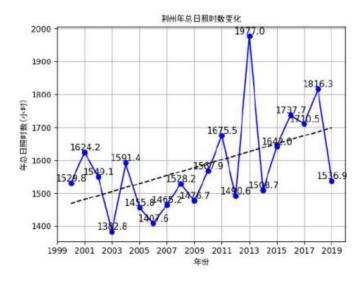


图 6-9 荆州 (2000-2019) 年日照时长 (单位: 小时, 虚线为趋势线)

6.1.1.1.6 气象站相对湿度分析

(1) 月相对湿度分析

荆州气象站 07 月平均相对湿度最大(79.7%),12 月平均相对湿度最小(73.7%)。

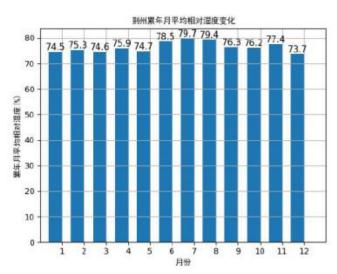


图 6-10 荆州月平均相对湿度(纵轴为百分比)

(2) 相对湿度年际变化趋势与周期分析

荆州气象站近 20 年年平均相对湿度呈现上升趋势,每年上升 0.16%,2018年平均相对湿度最大(79.4%),2008年年平均相对湿度最小(73.0%),周期为 3-4年。

6.1.1.2 预测等级判定

6.1.1.2.1 评价因子和评价标准筛选

根据本次评价工程分析章节污染源分析,将项目主要废气因子 HCl、TVOC 是作为本次大气环境影响评价因子。

各因子评价标准见表 6-5。

评价因子	取值时间	标准值	标准来源
HCl	24 小时平均	$15\mu g/m^3$	《环境影响评价技
псі	1 小时平均	$50\mu g/m^3$	术导则 大气环境》
TVOC	8 小时平均	600μg/m ³	(HJ2.2-2018) 表
TVOC	1 小时平均*	$1200 \mu g/m^3$	D.1

表 6-5 环境空气质量标准限值一览表

6.1.1.2.2 估算模型参数

估算模型参数见表 6-6。

表 6-6 估算模型参数表

	参数	取值
城市/农村选项	城市/农村	城市
城川/农শ延坝	人口数 (城市选项时)	20 万
最高	哥环境温度/℃	38.7
最低	氐环境温度/℃	-7
土	地利用类型	城市
×	域湿度条件	中等湿度气候
是否考虑地形	考虑地形	☑是 □否
走百 写	地形数据分辨率/m	90m
	考虑岸线熏烟	□是 図否
是否考虑岸线熏烟	岸线距离/km	/
	岸线方向/°	/

6.1.1.2.3 估算源强

估算模型预测源强见表 6-7。

表 6-7 估算模型源强参数取值一览表

序号	类型	污染源名称	X	V	点源 H	点源 D	点源 T	烟气量	面源宽度 m	面源长度 m	西酒 角度	方為官 II。	HCl	TVOC
	关 空	7年你石怀	Λ	Y	m	m	$^{\circ}$ C	m ³ /h	□ 伽 见 反 III	国你太凌 III	囲 你 用 反	有双同 He	kg/h	kg/h
1	点源	3#排气筒	161	57	20	1.0	25	5000	/	/	/	/	0.042	0.102
3	面源	2#储罐区	235	219	/	/	/	/	47	46	10	3		0.015

6.1.1.2.4 预测结果

表 6-8 估算模型估算结果一览表

序号	污染源名称	方位角度(度)	离源距离(m)	相对源高(m)	HCl D10(m)	TVOC D10(m)
1	3#排气筒		72	0	4.43 0	0.45 0
2	2#储罐区	45.0	80	0	0.00 0	3.58 0
	各源最大值				4.43	3.58

6.1.1.2.5 等级判定

根据导则规定,项目污染物数大于 1, 取 P 值中最大的 (Pmax) 和其对应的 D_{10%}作为等级划分依据,本项目 P 值中最大占标率为为 D_{10%}=4.43%。根据《环境影响评价技术导则 大气环境》 (HJ2.2-2018) 评价等级的划分原则,对电力、钢铁、水泥、石化、化工、平板玻璃、有色等高耗能行业的多源项目或以使用高污染燃料为主的多源项目,并且编制环境影响报告书的项目评价等级提高一级,确定本项目大气环境影响评价等级为一级。

6.1.1.3 预测方案

6.1.1.3.1 预测因子

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)和工程分析,选取有环境质量标准的评价因子为预测因子。本次评价确定大气环境影响评价因子 HCl、TVOC。本项目 SO₂+NOx 排放量小于 500t/a,不需要考虑预测二次污染物。

6.1.1.3.2 预测范围

根据导则,预测范围应覆盖评价范围。一级评价项目根据项目排放污染物的最远影响距离(D_{10%})确定大气环境影响评价范围。即以项目厂址为中心区域,自厂界外延 D_{10%}的矩形区域。根据估算模型预测结果,本项目最大占标率为车间 70.34%,D_{10%}=150m<2500m。根据导则要求,最终确定本项目预测范围及评价范围为以项目厂址为中心区域,边长 5km 的矩形区域。

6.1.1.3.3 预测周期及模型

选取 2019 年作预测周期, 预测时段取连续 1 年。

本项目预测范围≤50km,预测因子为一次污染物,评价基准年内风速≤0.5m/s的持续时间为 12h,不超过 72h,且 20 年统计的全年静风(风速≤0.2m/s)的频率为 12.2%,不超过 35%。采用估算模型判定不会发生薰烟现象。综上所述,选择导则推荐模型中的 AERMOD 模型进行预测计算。

6.1.1.3.4 模型主要参数

(1) 大气预测坐标系统

以厂西南角为原点,正东向为X轴,正北向为Y轴,建立坐标系。

(2) 地表参数及计算网格点的选取

根据项目周边地表类型,本次预测地面分为1个扇区,地面特征参数如下: 正午反照率为0.2075,波文率参数为1.625,粗糙率为0.4。

预测网格点按照近密远疏法进行设置,距离源中心 5km 的网格间距按 100m 的间距取值,5~15km 的网格间距按 250m 的间距取值。

(3) 地形参数

预测范围内地形采用 90×90m 地形数据, 预测范围内地形特征见图 6-11。

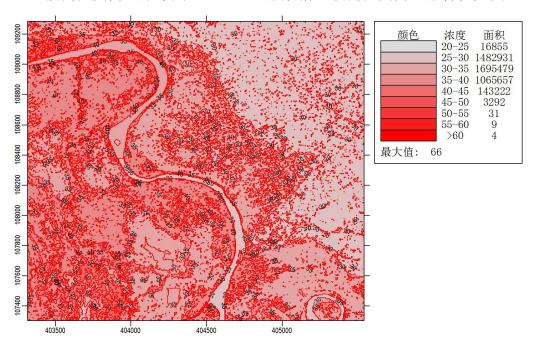


图 6-11 预测范围等高线示意图

(4) 保护目标的选取

本次评价根据预测范围内环境空气敏感区要求,选定环境保护目标作为预测的敏感点,经调查,上述大气环境评价范围内及周边主要环境空气保护目标见表 6-9。

序号	名称	坐标/m		功能	相对厂址方位	相对厂界距离	规模/人
厅 与	石 柳	X	Y	り り 形	相对,却刀型	/m	观怪/人
1	玉壶村	2284	345	居住	Е	1700	180
2	花台村	111	1074	居住	NE	1800	300

表 6-9 项目主要环境空气保护目标分布情况

3	锣场镇	-843	696	居住	NW	800	7000
4	渔湖村	-212	-1169	居住	S	850	200
5	白水村	-1333	107	居住	W	700	350

6.1.1.3.5 预测内容

本项目位于不达标区域,现状浓度超标的污染物为 PM_{10} 和 $PM_{2.5}$,本项目所在区域为不达标区,荆州市编制了《荆州市城市环境空气质量达标规划(2013-2022 年)》,提出到控制目标为: 到 2022 年,全市可吸入颗粒物(PM_{10})年均浓度控制在 $70\mu g/m^3$,全市细颗粒物($PM_{2.5}$)年均浓度控制在 $35\mu g/m^3$ 。根据导则要求,本次评价预测内容主要包括:

- ①项目正常排放条件下,各环境空气保护敏感点和网格点主要污染物的短期浓度和长期浓度贡献值,评价其最大浓度占标率;
- ②项目正常排放条件下,现状浓度达标污染物,预测评价叠加环境空气质量现状浓度后,环境空气保护目标和网格点主要污染物的保证率日平均质量浓度和年平均质量浓度的达标情况;对于项目排放的污染物仅有短期浓度限值的,评价其短期浓度叠加后的达标情况。如果评价范围内还有其他排放同类污染物的在建、拟建项目,还应叠加在建、拟建项目的环境影响。
- ③项目正常排放条件下,现状浓度超标污染物(PM₁₀和 PM_{2.5}),预测评价 叠加大气环境质量限期达标规划(简称"达标规划")的目标浓度后,各环境 空气保护目标和网格点主要污染物的保证率日平均质量浓度和年平均质量浓度 的达标情况;同步减去削减源的环境影响,叠加在建、拟建项目的环境影响。
- ④项目非正常排放条件下,预测环境空气保护目标和网格点主要污染物的 1h 最大浓度贡献值,评价其最大浓度占标率;
 - ⑤项目厂界浓度达标情况,大气环境防护距离设置情况。

评价对象	污染源	排放形式	预测内容	评价内容
T'44-5	新增污染源	正常排放	短期浓度 长期浓度	最大浓度占标率
不达标区 评价项目	新增污染源-区域 削减污染源+其他 在建、拟建的污染	正常排放	短期浓度 长期浓度	叠加达标规划目标浓度后的 保证率日平均质量浓度和年 平均质量浓度的占标率,或短

表 6-10 预测内容及评价要求

	源			期浓度的达标情况;评价年平
				均质量浓度变化率
	新增污染源	非正常排	1h 平均质	最大浓度占标率
		放	量浓度	
大气环境 防护距离	新增污染源	正常排放	短期浓度	大气环境防护距离

6.1.1.4 预测源强

正常工况源强参数见表 6-7。

非正常工况点源源强参数见表 6-11。

园区在建、拟建项目参数见表 6-12。

同期建设项目参数见表 6-13。

表 6-11 非正常工况源强参数取值一览表

序号	类型	污染源名称	X	V	点源 H	点源 D	点源 T	烟气量	面源宽度 m	面源长度 m	而酒鱼亩	方為亨 II。	HCl	TVOC
万 与	天空	77 朱 你 石 你	Λ	1	m	m	$^{\circ}\!\mathbb{C}$	m ³ /h	田が见及III	田你以文III	四你用反	有双向 ne	kg/h	kg/h
1	点源	3#排气筒	161	57	20	1.0	25	5000	/	/	/	/	0.278	13.611
3	面源	2#储罐区	235	219	/	/	/	/	47	46	10	3		0.154

表 6-12 园区在建、拟建项目预测参数

序号	类型	污染源名称	X	Y	点源 H m	点源 D m	点源 T ℃	烟气量 m³/h	面源宽度 m	面源长度 m	面源角度	有效高 He	HCl kg/h	TVOC kg/h
1	点源	公司待建工程 6#排气筒	-385	152	15	0.3	25	500	/	/	/	/	0.044	Kg/II
2	点源	公司待建工 程 7#排气筒	-427	96	15	0.3	25	1250	/	/	/	/		0.029
3	点源	公司待建工 程 8#排气筒	-374	106	15	0.3	25	7000	/	/	/	/		0.042
4	点源	公司待建工 程 9#排气筒	-367	163	15	0.3	25	1000	/	/	/	/		0.018
5	点源	公司待建工 程 10#排气筒	-378	117	15	0.3	25	1000	/	/	/	/		0.031
6	面源	公司待建工 程储罐区	-346	227	/	/	/	/	62	35	10	3		0.042

表 6-13 同期建设项目预测参数

序号	类型	污染源名称	X	Y	点源 H m	点源 D m	点源 T ℃	烟气量 m³/h	面源宽度 m	面源长度 m	面源角度	有效高 He	HCl kg/h	TVOC kg/h
1	点源	1#排气筒	269	119	15	1.0	25	4000	/	/	/	/	0.009	
2	点源	2#排气筒	75	37	20	1.5	25	5000	/	/	/	/		0.002
3	面源	1#储罐区	163	220	/	/	/	/	47	46	10	3		0.038

6.1.1.5 新增污染源正常工况预测结果

6.1.1.5.1 HCl 正常工况预测结果

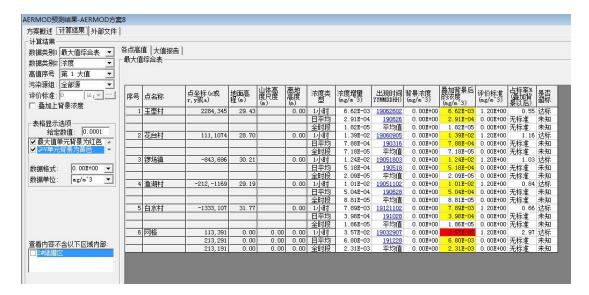
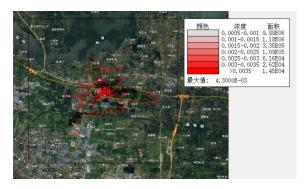
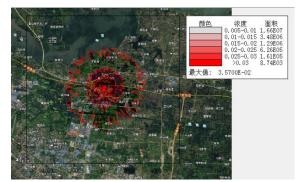
项目 HCI 小时浓度贡献值的最大占标率为 8.60% < 100%, 日均浓度贡献值的最大占标率为 3.54% < 100%, 符合环境质量标准要求。

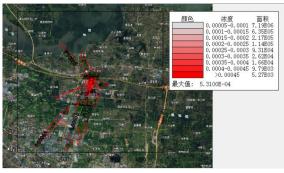
AERMOD预测结果-AERMOD方案7 方案概述 [计算结果] 外部文件] 计算结果 各点高值 | 大值报告 | 数据类别1 最大值综合表 ▼ 最大值综合表 数据类别2 浓度 高值序号 第 1 大值 污染源组: 全部源 農樓 点坐标 (x或 r. v或a) 高度 浓度增量 (mg/m^3) µ{ → ... 序号 点名称 评价标准: □ 叠加上背景浓度 玉壶村 19062906 5.00E-02 2284, 34 29.4 0.00 4.07E-04 O. 00E+00 .83E-05 .40E-07 .27E-04 0.00E+00 0.00E+00 0.00E+00 190628 平均值 表格显示选项 给定数值: 0.0001 2 花台村 111, 1074 28.70 0.00 5.00E-02 ✓ 最大值单元背景为红色 ▲ 日平均 5.45E-05 4.10E-06 190604 平均值 0.00E+00 45E-05 1.50E-02 全时段 1小时 日平均 0.00E+00 4.10E-06 0.0018+00 无标准 . 89E-04 . 86E-05 . 70E-07 锣场镇 -843, 696 30.21 0.00 19041818 008+00 0.00E+00 0.00E+00 0.00E+00 1.86E-05 9.70E-07 6.17E-04 0.00E+00 ▼ 数据格式: 191222 平均值 数据单位: mg/m^3 4 渔湖村 -212, -1169 0.00 29.19 19071903 6.17E-04 34E-04 00E+00 191215 平均值 .50E-U2 . .00E+00 无标准 -^=-02 0.88 1. 34E-04 1. 64E-05 4. 41E-04 1. 98E-05 6. 80E-07 4. 30E-03 008+00 1.64E-05 .00E+00 元标准 .00E-02 0.8 .50E-02 0.1 .00E+00 无标准 白水村 008+00 1.98E-05 6.80E-07 . 00E+00 . 00E+00 191219 平均值 网格 0.00 O. 00E+00 .00E-02 31E-04 00E+00 5.31E-04 1.50E-02 3. 1.01E-04 0.00E+00 无标准 190615 平均值 查看内容不含以下区域内部: O. OOE+OO

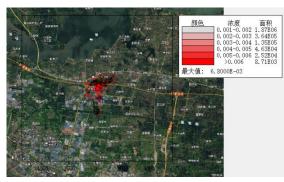
表 6-14 HCI 正常工况预测结果表

6.1.1.5.2 TVOC 正常工况预测结果

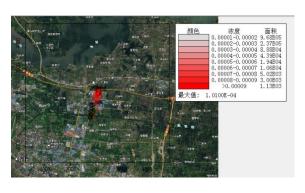
项目 TVOC 小时浓度贡献值的最大占标率为 2.97% < 100%, 符合环境质量标准要求。

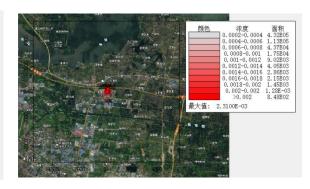

表 6-15 TVOC 正常工况预测结果表


HCl 1 小时浓度贡献预测值

TVOC1 小时浓度贡献预测值



HCl 日平均浓度贡献预测值



TVOC 日平均浓度贡献预测值

图 6-12 正常工况预测结果汇总图

HCl 年平均浓度贡献预测值

TVOC 年平均浓度贡献预测值

6.1.1.6 新增污染源非正常工况预测结果

6.1.1.6.1 HCI 非正常工况预测结果

项目 HCI 非正常工况小时浓度贡献值的最大占标率为 56.94% < 100%,符合环境质量标准要求。

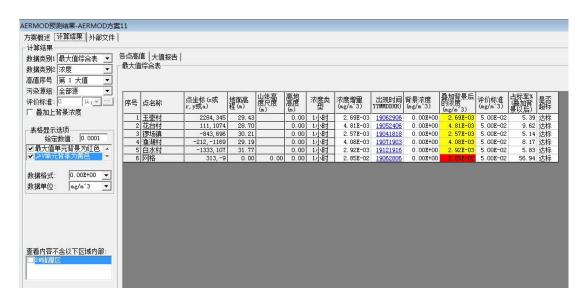


表 6-16 HCI 非正常工况预测结果表

6.1.1.6.2 TVOC 非正常工况预测结果

项目 TVOC 非正常工况小时浓度贡献值的最大占标率为 116.15% > 100%, 超过环境质量标准要求。

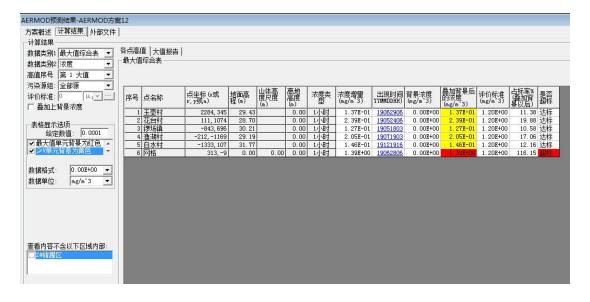
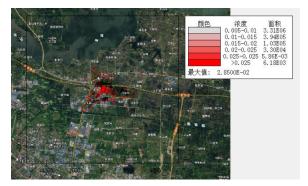
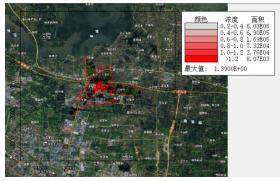




表 6-17 TVOC 非正常工况预测结果表

HCl 非正常工况小时浓度贡献预测值

TVOC 非正常工况小时浓度贡献预测值

图 6-13 非正常工况预测结果汇总图

6.1.1.7 区域污染源叠加预测

6.1.1.7.1 叠加预测方案

(1) 预测污染源

本项目叠加浓度具体叠加情况见表 6-17:

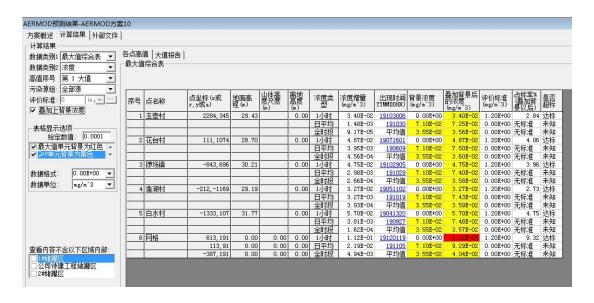
表 6-18 叠加预测方案

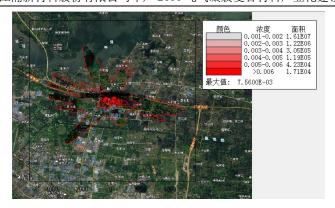
评价因子	评价时段	本项目	在建、拟 项目贡 献值	削减源	背景浓度μg/m³	数据来源
HCl	1h 平均浓度	$\sqrt{}$	$\sqrt{}$	-	10*	引用监测结果
TVOC	1h 平均浓度	√	√	-	213	引用监测结果

^{*}为未检出,按检测限50%计。

6.1.1.7.2 HCI 叠加预测结果

项目 HCI 小时浓度贡献值的最大占标率为 15.13% < 100%, 日均浓度贡献值的最大占标率为 29.89% < 100%, 符合环境质量标准要求。


AFRMOD荷测结果-AFRMOD方室9 方案概述 计算结果 外部文件 计算结果 各点高值 | 大值报告 | - 最大值综合表 数据类别1 最大值综合表 ▼ 数据类别2 浓度 高值序号 第 1 大值 污染源组: 全部源 出现时间 背景浓度 YYMMDDHH) (mg/m^3) 浓度增量 (mg/m^3) 评价标准 (mg/m°3) 评价标准: 0 序号 点名称 点坐标 (x或r, y或a) 地面高程(点) | September | Sep ▼ 叠加上背景浓度 1. 07E-03 4. 70E-05 2. 36E-06 1. 39E-03 9. 20E-05 9. 82E-06 1. 54E-03 9. 93E-05 6. 64E-06 (m) 0.00 1 玉壶村 19062906 29.4 190629 平均值 表格显示选项一 全时段 1小时 日平均 全时段 给定数值: 0.0001 2 花台村 111, 1074 28.70 0.00 19063006 0.00E+00 ☑最大值单元背景为红色 △ 190615 平均值 3 锣场镇 -843, 696 30.21 0.00 19090118 0.00E+00 × 数据格式: 190620 平均值 数据单位: mg/m³ 6.64E-06 9.28E-04 1.82E-04 3.23E-05 1.87E-03 8.35E-05 3.19E-06 7.56E-03 1.18E-03 4 渔湖村 -212, -1169 29, 19 0.00 O. 00E+00 191218 平均值 5 白水村 31.77 1小时 日平均 全时段 1小时 19121916 191219 平均值 0.00至+00 无标准 19062707 190624 平均值 6 网格 0.00 0.00 -387, 191 0.00 0.00E+00 5.00E-02 50E-02 查看内容不含以下区域内部:


表 6-19 HCI 叠加值预测结果表

6.1.1.7.3 TVOC 叠加预测结果

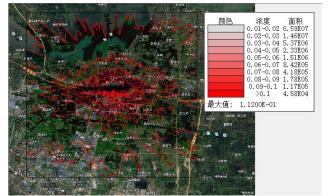
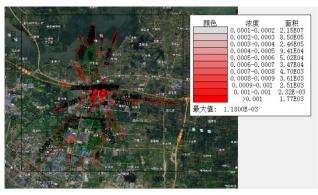
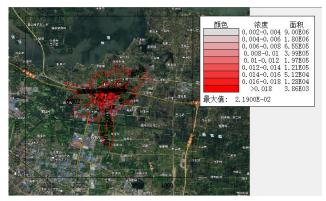
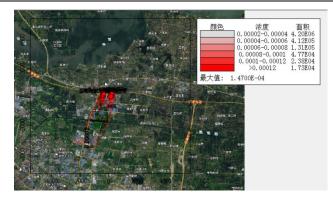

项目 TVOC 小时浓度叠加值的最大占标率为 9.32% < 100%, 符合环境质量标准要求。

表 6-20 TVOC 叠加值预测结果表

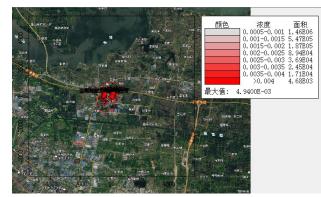



HCll 小时浓度叠加预测值

TVOC1 小时浓度叠加预测值



HCl 日平均浓度叠加预测值



TVOC 日平均浓度叠加预测值

图 6-14 区域污染源叠加预测结果汇总图

HCl 年平均浓度叠加预测值

TVOC 年平均浓度叠加预测值

6.1.1.8 污染物排放量情况

(1) 有组织排放量核算

废气污染物有组织排放量核算见表 6-20。

表 6-21 大气污染物有组织排放量核算表

序号	排放口编	污染物	核算排放浓度	核算排放速率	核算年排放量
77, 9	号	17条10	$(\mu g/m^3)$	(kg/h)	(t/a)
	主要排放口				
1	排气管 2#	氯化氢	8400	0.042	0.300
1	1 1 1 1 3	排气筒 3# VOCs 20		0.102	0.735
十	放口合计		氯化氢		0.300
土女汁	以口口口		VOCs		0.735
			有组织排放总计		
氯化氢			0.300		
VOCs				0.735	

(2) 无组织排放量核算

废气污染物无组织排放量核算见表 6-21。

表 6-22 废气污染物无组织排放量核算表

序	排放	产污环		主要污染		非放标准	年排
万 号	口编	节	污染物	上安行柴 防治措施	标准 夕称	浓度限值/	放量
7	号]7		№14日1日 NE	防治措施 标准名称	$(\mu g/m^3)$	/(t/a)
1	/	2#储罐	VOCs	油气回收系统	《挥发性有机物无组 织排放控制标准》 (GB37822-2019)	6000	0.111
∃ ∃	无组织排放总计 V)Cs	0.11	1	

(3) 大气污染物年排放量核算

大气污染物年排放量核算见表 6-22。

表 6-23 大气污染物年排放量核算表

序号	污染物	年排放量(t/a)
1	HCl	0.300
2	VOCs	0.846

6.1.1.9 环境防护距离计算

6.1.1.9.1 大气环境防护距离

根据导则 HJ2.2-2018 的要求,采用导则推荐模式中的大气环境防护距离模式计算该项目所有废气污染源的大气环境防护距离。计算出的距离是以污染源

中心点为起点的控制距离。对于超出厂界以外的范围,确定为项目大气环境防护区域。此范围为超过环境质量短期浓度标准值的网格区域。

根据计算结果,本项目从厂界起没有超过环境质量短期浓度标准值的网格 区域,因此不需要设立大气环境防护距离。

6.1.1.9.2 卫生防护距离

项目的卫生防护距离。

出于对项目环保从严要求的考虑,本评价参照 GB/T 39499-2020《大气有害物质无组织排放卫生防护距离推导技术导则》中计算公式再次进行项目卫生防护距离的计算,根据 GB/T 39499-2020《大气有害物质无组织排放卫生防护距离推导技术导则》,卫生防护距离计算公式如下:

$$\frac{Q_c}{Cm} = \frac{1}{A} (BL^C + 0.25r^2)^{0.50} L^D$$

式中: C_m —标准浓度限值, mg/Nm³

L——工业企业所需卫生防护距离,m

r——有害气体无组织排放源所在生产单元的等效半径,m

 $A \times B \times C \times D$ ——卫生防护距离计算系数

 Q_c ——工业企业有害气体无组织排放量可以达到的控制水平,kg/h根据污染物源强及当地的年均风速,由卫生防护距离计算模式计算得出该

根据 GB/T 39499-2020《大气有害物质无组织排放卫生防护距离推导技术导则》, "卫生防护距离在 50m 以内时,级差为 50m"; "卫生防护距离在大于等于 50m,小于 100m 时,级差为 100m"; "无组织排放多种有害气体的工业企业,当按两种或两种以上的卫生防护距离初值在同一级别时,该类工业企业的卫生防护距离级别应该高一级。"

该项目卫生防护距离计算结果详见下表。

表 6-24 项目卫生防护距离计算表

排放源	污染物	排放量 kg/h	卫生防护距 离计算值 (m)	卫生防护 距离(m)	确定卫生 防护距离 (m)	空气质量 标准 mg/m³
2#储罐区	VOCs	0.015	0.384	50	50	1.2

图 6-15 卫生防护距离计算结果

6.1.1.9.3 项目环境防护距离的确定

由此可见,根据大气环境防护距离计算软件和卫生防护距离的计算软件得 出的不同环境防护距离,取其最大值即卫生防护距离值作为项目环境防护距离。 其取值过程详见下表。

污染源	大气环境防护距离	卫生防护距离	环境防护距离
2#储罐区	无超标点	50	50

表 6-25 项目环境防护距离的确定一览表 单位: m

通过以上计算结果可知,本项目 2#储罐区设置 50m 的环境防护距离。根据对选址现场调查了解,项目防护距离范围内没有居民敏感点。同时,今后在项目防护距离覆盖范围内不应修建居住区、学校、医院等大气环境敏感建筑物。

6.1.1.10 大气环境影响评价结论

本次大气环境影响评价工作等级为一级。评价范围为以项目厂址为中心区域,边长 5km 的矩形区域。本次评价选取 AERMOD 模型进行预测。预测结果表明,正常工况条件下,项目外排各废气污染物对评价区域的影响值均可满足相应评价标准要求,对评价区域大气环境影响较小;非正常工况及事故工况下,项目外排的 HCl 污染物出现超过环境质量标准的情况,因此,生产过程中应严

格杜绝 HCl 废气的非正常工况及事故工况排放。

本项目 2#储罐区设置 50m 的环境防护距离。经实地踏勘,防护距离包络线范围之内不存在现有住户及其他大气环境保护目标。本次评价提出今后在该项目卫生防护距离覆盖范围内不应新建居住区、学校、医院等大气环境敏感建筑物。

企业通过采取相应措施和加强管理尽量减少废气无组织排放,同时应配合 当地主管部门做好卫生防护范围内的日常管理工作。通过相应的废气治理措施, 排放的废气对周围环境影响均较小。

6.1.1.11 大气环境影响评价自查表

本工程大气环境影响评价自查表详见下表。

表 6-26 大气环境影响评价自查表

Т	作内容			项 日	1		
评	评价等			二级[Ξ	
价等级与范围	级 评价范 围	边长=50km□	边长 5-50kmロ			边长:	=5km☑
评价	SO ₂ +N Ox 排放 量	≥ 2000t/a□	500 ~	500 ~ 2000t/a□			00 t/a☑
因子	评价因		基本污染物(/) 物(氯化氢、T V	本污染物(/) 物(氯化氢、TVOC)		包括二次 PM _{2.5□} 不包括二次 PM _{2.5} ☑	
评价标准	评价标准	国家标准□	地方标准口		附录 D☑		其他标 准□
	环境功 能区	一类区口		类区	V	一类区	和二类区
现	评价基 准年		(201	9) 分	年		
	环境空 气质状据 查数据 来源	长期例行监测数据 ☑	主管部门发布的数据□		前数据□	现状补	充监测☑
	现状评 价	达标[<u>X</u> 🗆		不达	□标区☑	

污染源调查	调查内容	项目正常持 项目非正常 ☑ 现有污染	约排放源	拟替代的污染》	原口	其他在建、	拟建源☑	:项目污染	÷ }7	☑域
	预测模 型	AERMOD ☑	ADMS	AUSTAL2000	EDMS/AEDT		CAI	LPUFF	网格模型□	其他□
	预测范 围	边长≥ 5	0km□	边长 5~	~50k	m 🗆	ì	边长 = 51	m ☑	
		夏	氰化氢、T	VOC				PM2.5 □ PM2.5 ☑		
大气环	正常排 放短期 浓度 贡 献值	本项目	最大占标	率≤100%☑		本项目最为	大占标	示率>100	% □	
境影	正常排 放年均	一类区		目最大占标率 ≤10%□		本项目最	是大标	率>10%		
影响预	浓度 贡献值	二类区		目最大占标率 ≤30%☑		本项目最	是 大标	率>30%		
	非正常 排放 1h 浓度贡 献值	非正常持 续时长 (1) h	非正常」	占标率≤100% □	非正常占标率>100		E>100%	√		
	保日浓年浓加 率均和均叠 加值		叠加达标			叠为	加不过	☆标 □		
	区域环 境质整体 变化情 况		k ≤-20%	o 🗆		k	>-20)% □		
环境	污染源 监测	监测因子: 化氢、TVO		有组织废 ⁶ 无组织废 ⁶				无监	测口	
监测计划	环境质 量监测	监测因子	: (氯化	氢、TVOC)				【监测 ☑		
评	环境影 响		可以接受			不可	可以接	受□		
价结论	大气环 境防护 距离	2#储罐区设	置 50m 的	环境防护距离	1					

	污染源 年排放 量	SO ₂ : (/) t/a	NOx: (/) t/a	颗粒物: (/) t/a	VOCs: (0.846) t/a
注:	"□" 为勾	选项 , 填"√" ; '	'()"为内容填写	 写项	

6.1.2 地表水环境影响预测评价

根据《环境影响评价技术导则一地面水环境》(HJ2.3-2018)中的分级原则与依据,本工程水环境评价工作等级为三级 B。根据导则要求,三级 B可不进行水环境影响预测。根据 8.1.2 规定:水污染影响型三级 B主要评价内容包括: a)水污染控制和水环境影响减缓措施有效性评价,b)依托污水处理设施的环境可行性评价。

6.1.2.1 纳污水体现状

本工程废水经现有项目污水处理站处理达标后排入市政污水管网进入荆州申联环境科技有限公司污水处理厂深度处理达标后排入长江(荆州城区段),根据长江(荆州城区段)现状监测数据,长江(荆州城区段)监测因子达到《地表水环境质量标准》(GB3838-2002)中的III类标准的有关要求。

6.1.2.2 废水处理途径

项目废水主要为工艺废水、循环冷却水排污水、盐酸吸收区产生的处理废水、喷淋装置区产生的尾气处理废水、车间地面清洗废水、生活废水及初期雨水。本项目所产生的废水将通过废水管道抽至公司现有厂区,依托公司现有厂区的污水处理站进行处理,污水处理站处理能力为 3750m³/d。污水处理站处理工艺为生产废水→格栅→调节均衡池→中和池→蒸汽加热池→UASB 厌氧反应器→初沉池→预曝池→生物接触氧化→二沉池→达标排放。根据待建项目《湖北江瀚新材料股份有限公司功能性硅烷偶联剂及中间体建设项目环境影响报告书》,公司现有厂区需处理的废水量为 671.1m³/d,公司现有厂区污水处理站仍有 3078.9m³/d 的处理余量,本项目和同期建设项目将新增废水 107.4m³/d,公司现有厂区污水处理站完全有能力进行处理。

处理后废水污染物浓度满足 GB8978-1996《污水综合排放标准》表 4 三级标准要求和州申联环境科技有限公司污水处理厂管网接管要求。公司废水处理达标后经污水管网排入荆州申联环境科技有限公司污水处理厂集中处理,最终排入长江(荆州城区段)。

6.1.2.3 项目废水进入荆州申联环境科技有限公司污水处理厂可行性分析

6.1.2.3.1 荆州申联环境科技有限公司概况

荆州申联环境科技有限公司污水处理厂(前身为荆州中环水业有限公司)位于湖北省荆州开发区内纺印三路 16 号。

2008年6月,荆州中环水业有限公司进行了印染废水集中治理和循环利用项目(一期项目),主要处理印染工业园区内印染废水,建设规模为3万吨/d。

2012年7月,荆州中环水业有限公司进行了印染工业园八万吨/日污水集中处理项目(二期项目),主要新增5万吨/工业废水处理规模。

2018年2月,荆州中环水业有限公司进行了荆州开发区3万吨生活污水处理设施改造工程建设项目,将污水处理厂一期工程升级改造成单一处理3万吨/d生活污水的处理系统。

2019年11月,宿迁银控自来水有限公司与荆州中环水业有限公司签订了《荆州中环水业有限公司整体资产重组协议》。重组后,宿迁银控自来水有限公司在荆州经济开发区成立两个独立子公司即荆州申联水务有限公司、荆州申联环境科技有限公司分别经营生活污水处理业务及工业污水处理业务,污水处理厂一期工程(生活污水)建设单位已荆州市中环水业有限公司变更为荆州申联水务有限公司,污水处理厂二期工程(工业污水)建设单位由荆州市中环水业有限公司变更为荆州申联环境科技有限公司。

荆州申联环境科技有限公司污水处理能力前期报建规模为5.0万m³/d,其处理设施实际处理能力仅为3.0万m³/d,公司为了给经济开发区提供更加完善的污水处理保障设施,更好的支撑经济开发区的长期发展,于2020年6月开展了荆州经济开发区工业污水处理厂二期提标升级改造工程,主要建设内容为:新建1条处理规模为2.2万m³/d的工业污水处理线,将工业污水处理能力3.0万m³/d提标升级并扩容至5.2万m³/d,同时对现有3万m³/d污水处理系统部分建、构筑物、道路及设施设备进行升级改造,增设厂区除臭系统、安防监控等附属设施。

(1) 排水夫向

根据《荆州市沙市化工园区总体规划》,目前荆州市沙市化工园区入驻企业废水经处理达标后排入荆州申联环境科技有限公司污水处理厂内进行进一步处理,最终通过荆州开发区排江工程排污口排入长江(荆州城区段)。

(2) 水质设计

根据《荆州经济开发区工业污水处理厂二期提标升级改造工程环境影响报告书》,荆州申联环境科技有限公司污水处理厂设计进水水质主要指标参数见下表。

表 6-27 污水处理厂纺织印染废水设计进水水质

项目	浓度	项目	浓度
COD	≦2500mg/L	BOD ₅	≦750mg/L
SS	≤900mg/L	pH 值	11-13
水温	≦40°C	色度	≦1200
苯胺类	\leq 5.0mg/L	六价铬	$\leq 0.5 \text{mg/L}$
溶解性盐	≤3500mg/L	可吸附有机卤素	≦8.0mg/L
TN	≦85mg/L	NH ₃ -N	≦60mg/L

表 6-28 污水处理厂综合工业污水设计进水水质

项目	浓度	项目	浓度
COD	$\leq 500 \text{mg/L}$	BOD ₅	≦150mg/L
SS	≦400mg/L	pH 值	6-9
总磷	≦8mg/L	色度	≦80
水温	≤40°C	溶解性盐	≤ 5000 mg/L
TN	≦50mg/L	NH ₃ -N	≦35mg/L
苯胺类	≤ 5.0mg/L	可吸附有机卤素	≦8.0mg/L

对于开发区新建非印染企业,常规因子执行下述标准。

表 6-29 污水处理厂非印染企业常规因子执行标准

项目	浓度	项目	浓度
COD	≤ 500mg/L	BOD ₅	$\leq 150 \text{mg/L}$
SS	≤400mg/L	pH 值	6-9
总磷	≦8mg/L	色度	≦80
TN	≤45mg/L	NH ₃ -N	≦35mg/L

(3) 处理工艺

荆州申联环境科技有限公司污水处理厂提标升级改造后污水处理工艺流程见下图。

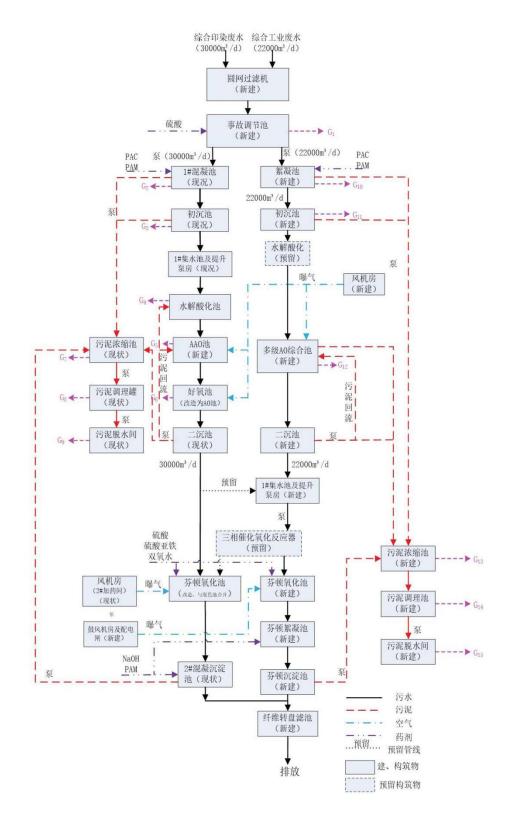


图 6-16 荆州申联环境科技有限公司污水处理厂设计工艺流程示意图

(4) 尾水排放标准

荆州申联环境科技有限公司污水处理厂提标升级改造后尾水执行《城镇污水处理厂污染物排放标准》(GB18918-2002)中一级 A 标准, 苯胺类、硫化物

执行《城镇污水处理厂污染物排放标准》(GB18918-2002)表 3 中标准。主要出水污染物控制指标如下表所示。

项目	浓度	项目	浓度
COD	$\leq 50 \text{mg/L}$	BOD ₅	≦10mg/L
SS	$\leq 10 \text{mg/L}$	NH ₃ -N	≦5mg/L
TN	$\leq 15 \text{mg/L}$	总磷	≤ 0.8 mg/L
苯胺类	$\leq 0.5 \text{mg/L}$	硫化物	≦1.0mg/L

表 6-30 污水处理厂主要出水污染物控制指标

6.1.2.3.2 项目废水进荆州申联环境科技有限公司污水处理厂可行性分析

(1) 水质符合性分析

本工程废水经处理后,废水污染物浓度可达到《污水综合排放标准》 (GB8978-1996)表 4 三级标准并同时满足荆州申联环境科技有限公司污水处理 厂接管协议水质要求。

本工程废水经现有项目污水处理站处理后,废水水质符合荆州申联环境科技有限公司污水处理厂的接管标准,不会对荆州申联环境科技有限公司污水处理厂进水水质造成冲击。因此,荆州申联环境科技有限公司污水处理厂污水处理工艺及规模能够满足本工程污水处理的要求。

(2) 管网衔接性分析

目前,公司所在区域已敷设有污水管网,该区域废水可顺利排入污水管网进入荆州申联环境科技有限公司污水处理厂深度处理,本工程废水可顺利进入市政污水管网。

(3) 废水对处理厂冲击性分析

荆州申联环境科技有限公司污水处理厂提标升级改造后处理能力为 5.2 万 m³/d。根据实地调查,荆州申联环境科技有限公司污水处理厂,日平均污水处理量为 2.0 万 m³/d,高峰进水量为 2.2~2.8 万 m³/d。按最高峰进水量情况考虑,还剩余 2.4 万 t/d 工业污水处理能力。本项目和同期建设项目将新增废水 107.4m³/d,剩余 2.4 万 t/d 工业污水处理能力,完全可以接纳本工程废水。

终上所述,本工程废水进荆州申联环境科技有限公司污水处理厂处理是可 行的。

6.1.2.4 地表水影响分析

根据《荆州经济开发区工业污水处理厂二期提标升级改造工程环境影响报告书》的内容,荆州申联环境科技有限公司污水处理厂正常排放时在不同水文条件下(枯水期和丰水期),观音寺国控断面 COD_{Mn}浓度最大值<0.0025mg/L,氨氮浓度最大值<0.001mg/L,苯胺类浓度最大值<0.0005mg/L,总磷浓度最大值<0.0001mg/L,观音寺国控断面水质各预测因子均达标,排污口不会对其产生污染影响;马家寨乡自来水厂取水口 COD_{Mn}浓度最大值为 0.0017mg/L,氨氮浓度最大值为 0.0005mg/L,苯胺类浓度最大值为 0.0001mg/L,总磷浓度最大值为 0.0001mg/L,马家寨乡自来水厂取水口处水质各预测因子均达标,排污口不会对其产生污染影响;公安县城区二水厂取水口 CODMn 浓度最大值为 0.0001mg/L,总磷浓度最大值为 0.0001mg/L,经安县城区二水厂取水口处水质各预测因子均达标,排污口不会对其产生污染影响。公安县城区二水厂取水口处水质各预测因子均达标,排污口不会对其产生污染影响。

非正常排放在不同水文条件下(枯水期和丰水期),观音寺国控断面 COD_{Mn}浓度最大值<0.05mg/L,氨氮浓度最大值<0.01mg/L,苯胺类浓度最大值<0.00001mg/L,总磷浓度最大值<0.00005mg/L,观音寺国控断面水质各预测因子均达标,排污口不会对其产生污染影响;马家寨乡自来水厂取水口 COD_{Mn}浓度最大值为 0.0155mg/L,氨氮浓度最大值为 0.0015mg/L,苯胺类浓度最大值<0.0001mg/L,总磷浓度最大值<0.0001mg/L,总磷浓度最大值<0.0001mg/L,马家寨乡自来水厂取水口处水质各预测因子均达标,排污口不会对其产生污染影响;公安县城区二水厂取水口CODMn浓度最大值为 0.0131mg/L,氨氮浓度最大值为 0.0013mg/L,苯胺类浓度最大值<0.0001mg/L,总磷浓度最大值为 0.0001mg/L,公安县城区二水厂取水口处水质各预测因子均达标,排污口不会对其产生污染影响。

因此,本工程外排综合废水通过预处理后排入荆州申联环境科技有限公司 污水处理厂对周围水环境影响较小。

6.1.2.5 地表水环境影响评价自查表

项目地表水环境影响评价自查表见下表。

表 6-31 地表水环境影响评价自查表

工作内容		自查项目				
影	水污染影响型 🗹; 水文要素影响型 🗆					
响	水环境保	饮用水水源保护区 口;饮用水取水口 口;涉水的自然保护区 口;重要湿				

识	护目标	地 🗅;						
别	3/ III 1/3.	 重点保护与珍稀水生生物的栖息		内自然产卵场及索 				
/3,		饵场、越冬场和洄游通道、天然渔						
			其他 🗆					
	B/	水污染影响型	水文要素质	影响型				
	影响途径	直接排放□;间接排放☑;其他□□□	水温 □; 径流 □;	水域面积 🗆				
	影响因子	持久性污染物 ☑; 有毒有害污染物 □; 非持久性污染物 ☑; pH 值□; 热污染□; 富营养化□; 其他□	水温 □; 水位 (水深) □; 流速 □; 流 量 □; 其他 □					
		水污染影响型	水文要素類	影响型				
Ť	评价等级	一级 □; 二级 □; 三级 A □; 三级 B ☑	一级 🗅; 二级	□; 三级 □				
		调查时期	数据来	源				
	区域污染 源	已建 □; 在建	排污许可证 □; 环评 既有实测 □; 现场监测 数据 □; э	则 🗅; 入河排放口				
		调查时期	数据来					
	受影响水	丰水期 ☑; 平水期 □; 枯水						
	体水环境	期 □; 冰封期 □ 春季 □; 夏	生态环境保护主管部门 □; 补充监测					
- *□	质量	季 □; 秋季 □; 冬季 □	☑; 其他 □					
现	区域水资		ı					
状 调	源开发利	未开发 □; 开发量 40	%以下 ☑; 开发量 40%	6以上 🛮				
一百	用状况							
		调查时期	数据来	源				
	水文情势	丰水期 口; 平水期 口; 枯水期	业/元·安·安·西门 - 为一步 - 加 - 甘 - 村					
	调查	□; 冰封期 □ 春季 □; 夏季 □;	水行政主管部门 □; 补充监测 □; 其他 					
		秋季 □; 冬季 □	_					
		监测时期	监测因子	监测断面或点位				
	补充监测	丰水期 ☑; 平水期 □; 枯水	(水温、pH、COD、	监测断面或点位				
	个ドノに血一次	期 🗅 ; 冰封期 🗆 春季 🗅 ; 夏	氨氮、BOD5、总磷、	个数(3)个				
		季 □; 秋季 □; 冬季 □	DO)					
	评价范围	河流:长度(5)km;湖库、河	「口及近岸海域:面积((/) km ²				
		河流、湖库、河口: I 类 u; I		· · · · · · · · · · · · · · · · · · ·				
	评价标准	近岸海域:第一类 □;第二类	□; 第三类 □; 第四类					
		规划年评价标准 (/)						
ਵ ਿ	评价时期	丰水期 □; 平水期 □; 枯水期 冬季 □	□; 冰封期 □ 春李 □;	夏李□; 秋李□;				
现状		· 水环境功能区或水功能区、近岸	上海域环境功能区水质 运	大标状				
评		况 □: 达标 ☑; 不达标 □	7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7					
价		水环境控制单元或断面水质达标	示状况 □: 达标 図; 不達	达标 □ 达标区				
וע		水环境保护目标质量状况 □: 达标 □; 不达标 □						
	评价结论	对照断面、控制断面等代表性断	所面的水质状况 □: 达林	示				
		不达标 🗆						
		底泥污染评价 🗆						
		水资源与开发利用程度及其水文	で情势评价 □					
1		水环境质量回顾评价 □						

			资源(包括水能资 求与现状满足程度 胡演变状况 □						
	预测范围		km;湖库、河口	及近岸海域: 『	面积(/)km ²	2			
	预测因子	/							
影响预	预测时期		丰水期 □; 平水期 □; 枯水期 □; 冰封期 □ 春季 □; 夏季 □; 秋季 □; 冬季 □ 设计水文条件 □						
测	预测情景	污染控制和减缓	运行期 □; 服务期 惜施方案 □ 质量改善目标要求		工况 🖙 非〕	正常工况 □			
	预测方法	数值解 □:解析	解口;其他口导	则推荐模式 🛭	: 其他 🗆				
	水污染控 制和水响减 境措施有 效性评价	区(流)域水环	境质量改善目标 🗆	ı;替代削减源					
影响评价	水环境影响评价	水环境功能区或 满足水环境保护 水环境控制单元或 满足重点水污染。 染物排放满足等。 标要求 □ 水文要素影响型。 值影响评价、生态 海域)排放口的。	排放口混合区外满足水环境管理要求 □ 水环境功能区或水功能区、近岸海域环境功能区水质达标 □ 满足水环境保护目标水域水环境质量要求 □ 水环境控制单元或断面水质达标 □ 满足重点水污染物排放总量控制指标要求,重点行业建设项目, 主要污染物排放满足等量或减量替代要求 □ 满足区(流)域水环境质量改善目标要求 □ 水文要素影响型建设项目同时应包括水文情势变化评价、主要水文特征值影响评价、生态流量符合性评价 □ 对于新设或调整入河(湖库、近岸海域)排放口的建设项目,应包括排放口设置的环境合理性评价 □ 满足生态保护红线、水环境质量底线、资源利用上线和环境准入清单管						
	污染源排	污染物名称	排放量/	(t/a)	排放浓度/(mg/L)				
	放量核算	COD	0.292	2	50				
		NH ₃ -N	0.029	9		5			
	替代源排 放情况	污染源名称	排污许可证编 号	污染物名称	排放量/ (t/a)	排放浓度/ (mg/L)			
		(/)	(/)	(/)	(/)	()			
	生态流量 确定		水期()m³/s;鱼氢 ()m;鱼类繁殖) m ³ /s 生态			
	''''' 	/(X/1\79)		あく / III; 共 査项目	10 () III				
	环保措施	污水处理设施 区 依托其他工程措施	1;水文减缓设施 [障设施 □; ▷	区域削减 □;			
			环境质	量	污迹	 杂源			
防治	监测计划	监测方式	手动 □; 自动 ☑	☑; 无监测 □		自动 ☑; 无 则 □			
措施	血侧口划	监测点位	现状监测点	位相同	厂区	总排口			
) AE		监测因子	pH、COD	、氨氮	1	BOD5、SS、 氮			
	污染物排			\checkmark					

	放清单	
l	评价结论	可以接受 ☑;不可以接受 □
ĺ	注: "□" 为	勾选项,可√;"()"为内容填写项;"备注"为其他补充内容。

6.1.3 声环境影响预测评价

6.1.3.1 噪声源分析

固定声源主要为厂区内固定生产设备,噪声值在 75~105dB(A),治理后噪声值在低于 75dB(A),详见表 6-30。

序号	污染源	数量(台/套)	治理前噪声值 dB(A)	治理措施	治理后噪声值 dB(A)
1	各类泵机	20	75~80	减振、隔声	≤75
2	空压机	2	90~100	减振、隔声	≤75
3	冷冻机	4	95~105	减振、隔声	≤75
4	风机	4	90~100	减振、隔声	≤75

表 6-32 厂区内固定声源情况一览表

6.1.3.2 声波传播途径分析

厂区现状地面类型为旱地;项目建成投产后,厂区周围布置绿化带,地面类型为硬化地面。

6.1.3.3 预测内容

根据拟建工程的噪声源分布情况,在工程运行期对厂址的厂界四周噪声影响进行预测计算,并与厂址四周声环境质量现状本底值进行叠加。

以预测点为原点,选择一个坐标系,确定各噪声源位置,并测量各噪声源到预测点的距离,将各噪声源视为半自由状态噪声源,按声能量在空气传播中衰减模式可计算出某噪声源在预测点的声压级,预测模式如下:

①室外声源

计算某个声源在预测点的倍频带声压级

$$L_{oct}(r) = L_{oct}(r_0) - 20 \lg \left(\frac{r}{r_0}\right) - \Delta L_{oct}$$

式中: Loct(r)——点声源在预测点产生的倍频带声压级;

Loct(r0)——参考位置 r0 处的倍频带声压级;

r——预测点距声源的距离, m;

r0——参考位置距声源的距离, m;

ΔLoct——各种因素引起的衰减量(包括声屏障、遮挡物、空气吸收、 地面效应等引起的衰减量,其计算方法详见"导则"正文)。

如果已知声源的倍频带声功率级 Lwoct, 且声源可看作是位于地面上的,则:

$$L_{oct}(r_0) = L_{w_{oct}} - 20 \lg r_0 - 8$$

由各倍频带声压级合成计算出该声源产生的声级 LA。

②室内声源

首先计算出某个室内靠近围护结构处的倍频带声压级:

$$L_{oct,1} = L_{w \ oct} + 10 \lg \left(\frac{Q}{4\pi r_1^2} + \frac{4}{R} \right)$$

式中: Loct, 1 为某个室内声源在靠近围护结构处产生的倍频带声压级, Lwoct 为某个声源的倍频带声功率级, r1 为室内某个声源与靠近围护结构处的距离, R 为房间常数, Q 为方向因子。

计算出所有室内声源在靠近围护结构处产生的总倍频带声压级:

$$L_{oct,1}(T) = 10 \lg \left[\sum_{i=1}^{N} 10^{0.1 L_{oct,1(i)}} \right]$$

计算出室外靠近围护结构处的声压级:

$$L_{oct,2}(T) = L_{oct,1}(T) - (TL_{oct} + 6)$$

将室外声级 Loct, 2(T)和透声面积换算成等效的室外声源, 计算出等效声源 i 个倍频带的声功率级 Lwoct:

$$L_{w-oct} = L_{oct,2}(T) + 10\lg S$$

式中: S 为透声面积, m^2 。

等效室外声源的位置为围护结构的位置,其倍频带声功率级为 Lwoct,由此按室外声源方法计算等效室外声源在预测点产生的声级。

由上述各式可计算出周围声环境因该项目设备新增加的声级值,综合该区内的声环境背景值,再按声能量迭加模式预测出某点的总声压级值,预测模式如下:

$$Leq_{E} = 10\lg(\frac{1}{T})\left[\sum_{i=1}^{n} t_{ini}10^{0.1L_{Aini}} + \sum_{j=1}^{m} t_{outj}10^{0.1L_{Aoutj}}\right]$$

式中: Leg 总—某预测点总声压级, dB(A);

n—为室外声源个数;

m—为等效室外声源个数;

T—为计算等效声级时间。

6.1.3.4 噪声影响预测结果分析

(1) 环境噪声预测结果

本环评按《环境影响评价技术导则声环境》(HJ2.4-2009)噪声导则进行了预测,噪声衰减因素中考虑了几何发散、空气吸收、地面吸收和屏障衰减等的影响。根据噪声预测模式进行计算可得本项目和同期建设项目对厂界噪声的贡献值影响预测结果见下表 6-32。

点位名称	时段	预测结果 LAeq dB(A)						
思世石柳 	的权	贡献值	背景值	预测值	标准限值	达标情况		
东边厂界	昼	31.7	54	54.0	65	达标		
1#	夜	31.7	50	50.1	55	达标		
南边厂界	昼	33.4	53	53.0	65	达标		
2#	夜	33.4	49	49.1	55	达标		
西边厂界	昼	36.2	54	54.1	65	达标		
3#	夜	36.2	50	50.2	55	达标		
北边厂界	昼	28.9	58	58.0	65	达标		
4#	夜	28.9	54	54.0	55	达标		

表 6-33 噪声影响预测结果一览表

由预测结果可以看出,各厂界昼、夜噪声贡献值均能达到《工业企业厂界环境噪声排放标准》(GB 12348-2008)3 类标准,预测值均能达到《《声环境质量标准》(GB3096-2008)3 类标准。因此,本项目和同期建设项目噪声对周边声环境影响较小。

6.1.4 固体废物环境影响预测评价

6.1.4.1 固体废物产生与处置措施及合理性分析

(1) 固废废物处置原则

为防止固体废物污染环境,保障人体健康,对固体废物的处置首先考虑合理使用资源,充分回收,尽可能减少固体废物产生量,其次考虑对其安全、合

理、卫生的处置,力图以最经济和可靠的方式将废物量最小化、无害化和资源化,最大限度降低对环境的不利影响。

(2) 固体废物产生及处置情况

国家环保局环控[1994]345 号文《关于全国开展固体废物申报登记工作的通知》及《固体废物申报登记工作指南》中,将固体废物分为危险废物、一般工业固体废物及其它固体废物三类。根据《国家危险废物名录》(2021 年版)进行识别后,本项目生产过程中产生的固体废物见表 6-32。经有效治理后,本项目固体废物排放量为零,对环境造成影响较小。

类别	排放源	污染物名称	主	处置措施及排		
矢加	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7分余初石物	产生量	削减量	排放量	放去向
	危险废物	废矿物油	3.6	3.6	0	暂存后委托有 资质单位定期 处理
固体	一般工业废物	污水处理污泥	1.4	1.4	0	作为制砖材料 或进入生活垃 圾场进行填埋 处理
	生活废物	生活垃圾	5.1	5.1	0	由环卫部门处 理

表 6-34 本项目固体废物产生及处置情况分析汇总表 单位: t/a

6.1.4.2 固体废物的主要危害

固体废物对环境的危害主要体现在以下五个方面:

- (1)侵占土地:固体废物需要占地堆放,堆积量越大,占地面积就越多, 影响周围景观和人们的正常生活与工作。
- (2)污染土壤:固体废物堆放场所如果没适当的防渗措施,其中的有害组分很容易经过风化、雨淋溶、地表径流的侵蚀而渗入土壤,并破坏土壤微生物与周围环境构成系统的平衡,导致草木不能正常生长。
- (3)污染水体:固体废物中有害组分随雨水和地表径流流入地面水体,使地面水体受到污染,或进入土壤污染地下水。
- (4)污染大气:固体废物堆放和运输过程中会产生有害气体,污染大气。 此外,以细粒状存在的废渣和垃圾在大风吹动下会进入大气,从而污染大气。
- (5)影响环境卫生:生活垃圾以及其他各类固体废物清运不及时,便会产生堆存,严重影响人们居住环境的卫生状况,对人体健康构成威胁。

6.1.4.3 固体废物接纳及贮存环境影响分析

本项目处置的固体废物有废矿物油危险废物,均需在有资质单位外购。

在转运过程中均需按照《危险化学品安全管理条例》、《危险废物转移联 单管理办法》、《湖北省固体(危险)废物转移管理办法》相关要求执行。

项目拟依托公司现有厂区 50m² 的危险废物临时暂存间对危险废物进行暂存。危险废物临时暂存间已按相应要求采取防渗措施。

因此,本项目接纳及贮存危险废物对外环境影响较小。

6.1.4.4 固体废物暂存、处置、运输的影响分析

本项目固体废物的环境影响包括三个部分:一是固体废物在厂内暂时存放时的环境影响,二是固体废物在最终处理以后的环境影响,三是危险废物收集运输过程中的环境影响。

(1) 固体废物暂存的环境影响

本项目在固体废物处理之前,一般需要预先收集并存贮一定数量的危险废物;此外,废液无害化处理产生的废物在最终处理前也需在厂内暂存一段时间。

由于这些废物含有有毒有害物质,存在较大的毒性和腐蚀性,因此暂存过程应根据《危险废物贮存污染控制标准》(GB18597-2001)及 2013 年修改单进行贮存: 贮存仓库按照规定设置警示标志; 所有贮存装置必须要有良好的防雨防渗设施,暂存未处理的废物必须存放于室内,地面须水泥硬化; 贮存仓库只作为短期贮存使用,不得长期存放危险废物。

通过上述方法, 固体废物暂存对环境产生的影响较小。

(2) 固体废物最终处理环境影响

项目产生的固废包括危险固废、一般固废和生活垃圾。

固体废物通过分类收集分类处置,生活垃圾交由园区环卫部门处置;危险废物废矿物油,厂区内收集暂存后交由有资质单位进行处置;污水处理污泥作为制砖建材或者进入生活垃圾填埋场进行填埋处理。

经过上述处理后,本项目产生的固体废物对环境产生的影响较小。

(3) 危险废物收集运输过程中的环境影响

本项目产生的危险废物经过收集包装后,建设单位应委托有资质的运输单位进行运输。运输者需要认真核对运输清单、选择合适的装载方式和适宜的运

输工具。在进行公路运输时,为保证安全,危险废物不能在车辆上进行压缩。 为防止运输过程中危险废物泄漏对环境造成污染,运输车辆必须具有必要的安 全、密闭的装卸条件,对司机也应进行专业培训。此外,危险废物运载车辆应 标有醒目的危险符号,危险废物承运者必须掌握所运危险废物的必要资料,并 制定在出现危险废物泄漏事故时的应急措施等。通过上述方法,固体废物收集 运输对环境产生的影响较小。

(4) 对管理人员与管理制度的要求

项目应有专人负责危险废物的收集与管理,收集和管理人员必须由具备一定的专业知识、经验和相应资格的人员担任。企业必须建立和健全严格的危险 废物管理制度,主管人员必须对危险废物的收集系统、设施进行定期检查,对危险废物的产生量、临时贮存量和进出厂的情况如实记录。不同种类危险废物的贮存容器或贮存包装应有不同颜色的标签加以区分,并应标明危险废物的名称、数量及贮存日期等。

6.1.4.5 固体废物环境影响分析小结

固体废物污染影响分析表明,本项目产生的固体废物(特别是危险废物)如不妥善处置,就会对生态环境和人体健康造成危害。因此必须按照国家对固体废物(特别是危险废物)的规定,对本项目产生的固体废物进行全过程严格管理和安全处置。

只要严格管理,并进行安全处置,本项目产生的固体废物将不会对生态环 境和人体健康产生危害。

要控制废物对环境造成污染危害,必须从各个环节进行全方位管理,采取有效措施防止固废在产生、收集、贮存、运输过程中的散失,并采用有效处置方案和技术,首先从有用物料回收再利用着手,这样既回收了一部分资源,又减轻处置负荷,对目前还不能回收利用的,应遵循"无害化"处置原则进行有效处置。

拟建项目应树立强烈的环保意识,除采取措施杜绝固废、废液在厂区内的 散失、渗漏外,还应采取措施加强废物产生、收集、贮存各环节的管理,并委 托相关资质单位对其产生的固体废物进行合理有效的处置。通过处置,可以达 到减量化、无害化的目的,对环境不会产生明显的污染影响。 综上所述,拟建项目固体废物的收集、贮运和转运环节应严格按照《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2020)及修改单标准、《危险废物贮存污染控制标准》(GB18597-2001)及其修改单标准以及《危险废物收集贮存运输技术规范》(HJ2025-2012)等相关规范进行。在加强管理并落实好各项污染防治措施和固体废物安全处置措施的前提下,拟建项目产生的固体废物对周围环境影响较小。

6.1.5 地下水环境影响预测评价

6.1.5.1 区域水文地质条件概况

6.1.5.1.1 区域地层岩性

荆州地区地层出露甚少,只有两个时代的地层。其中第四系地层几乎占了整个荆州地区地表,第三系地层几乎全部下伏第四系下部。

6.1.5.1.2 区域地质构造

工程区域有两个构造带,即江汉平原沉降带和挽近期构造带。

(1) 江汉平原沉降带

它是一个主轴北北东向展布的沉降带。自白垩纪以来,就形成了新华夏系构造的基本轮廓。喜山运动结束后,就终止了它的生成过程。这个沉降带是新华夏系的第二沉降带江汉一级沉降区。

总的来看,白垩及下第三系是一个单斜构造。沉积巨厚达千米。岩层倾角平缓,一般为5°左右,向着盆地内部倾斜。

在这个单斜构造及其古地理面影响下,其上覆的上第三系和第四系的水文 地质条件受到了它的制约。它控制了上第三系和第四系的沉积厚度,岩相变化 和地下水运移条件。由于沙市区下第三系粘土岩分布甚多,就限值了上覆含水 岩系对它的垂向补给,起到了相对隔水的作用,直接控制了上覆含水岩系的储 水条件。同时也控制了地下水向盆地运移的基本趋势。

(2) 挽近期构造带

上第三系初期,盆地周缘逐渐升起,盆地中部继续下沉。但在这漫长的地质历史时期,有时亦有回升现象。总的是下沉时间长和幅度巨大,所以堆积了巨厚的上第三纪地层及第四系地层,前者厚达 790 余米,后者百余米。自全新世以来,下降运动又趋强烈。长江和汉水大堤年年加高和大地测量资料,可证

实下降在继续中。

6.1.5.1.3 区域水文地质条件

- (1) 松散第四系含水岩层(系)
- 1)河漫滩砂、砂砾石孔隙潜水

分布在长江和汉水的两侧或者江心沙洲。全部由全新统粉质土、砂、卵砾石组成。长江一带厚度为 40 米左右,汉水一带为 10-20 米。水位很浅一般多在 0.5 米以内。地下水受江水补给,其动态受江水涨落影响较大。水量极丰富,钻 孔最大可能涌水量大于 5000 吨 / 昼夜。

2)长江、汉水一级阶地砂、砂砾石孔隙承压水

在一级阶地上有三个岩性层次。在滨湖地区,上部是冲湖积层(Q4al+l)。 主要是灰黑色粉质粘土及淤泥质粉质粘土,底部为粉细砂层。总厚度 3-5 米。由 于水质较差,铁离子含量较高对民用有一定的影响。在一级阶地的其它地区: 上部是亚砂土、粉砂土及粉细砂层。从阶地前缘向后缘过渡,粘土含量逐渐增 多。由于含水层较薄富水性很弱,对供水意义不大。

上述下伏地层是粘土、粉质粘土及淤泥质粉质粘土,是该含水岩系的隔水层顶板,其厚度在长江一级阶地为7-36米,最厚可达50余米,在汉水一级阶地厚10-15米,最厚可达20余米。隔水层下部是砂、及砂砾石含水层,在长江一级阶地厚度为40-100米,在汉水一级阶地,为20-60米,从阶地后缘往前缘逐渐变厚,在这个含水层中常夹有淤泥质粉细砂或淤泥层。

为承压含水层,但承压力不大,一般水位为 0.2-2.0 米,都是负水头。水量丰富,钻孔最大可能涌水量为 1000-5000 吨 / 昼夜。

补给方式有两种,其一是靠江心沙洲及漫滩相孔隙潜水补给。这种补给方式是由于其底线切穿了这个承压含水层顶板的缘故。其二是与下伏上第三系含水岩系构成互补关系。这是由于这个含水岩系分布在上第三系侵蚀台面上的缘故。在这种侵蚀台面上有含水层直接与砂砾石层相通,构成密切的水力联系。此外,沿阶地延伸方向,还承受上游的地下径流补给。

地下水的水化学类型为重碳酸钙钠型水,矿化度小于1克/升,属于低矿化淡水。铁离子含量较高,都大于0.3毫克/升,最高可达十几毫克/升。作为民用或洗染用水必须进行处理。但对农田灌溉没有妨碍。

3)长江二阶阶地砂、砂砾石孔隙承压水

含水岩系为二元结构。上部为灰褐、灰白、棕黄及紫红色粘土,厚度为 14-22 米,有时还夹有淤泥质亚粘土。下部是细砂层,有时底部还有砂砾石层,厚度 13-40米,其间局部夹有淤泥质粉细砂层。为承压水,但都是负水头。水位埋深 多为 2-5 米。水量较丰富,钻孔最大可能涌水量为 500-1000 吨 / 昼夜。

水化学类型为重碳酸钙型及重碳酸钙镁型。矿化度小于1克/升,属于低矿化淡水。铁离子含量一般都低于一级阶地,水质相对较好。

(2) 各含水层之间的补排关系

长江二阶阶地砂、砂砾石孔隙承压水通过侧向径流补给长江一级阶地砂、砂砾石孔隙承压水,而长江一级阶地砂、砂砾石孔隙承压水与河漫滩砂、砂砾石孔隙潜水呈互补关系。地下水流向大致由东北向西南流,但水力梯度较小,长江是地下水的最终排泄场所。

6.1.5.2 场地水文地质条件

本次对场地水文地质条件调查引用本项目地勘资料进行评价。

6.1.5.2.1 地下水

根据钻孔揭示该场地内地下水主要存在两个含水层组,即浅部的上层滞水和下部砂层中的承压水。

其中上层滞水主要分布于场地浅部,在本场区内主要赋存于①层素填土中,该含水层组由于层间孔隙较大,其土层成份较为不均一,因此其透水性也因地而异,一般情况下其水量不大,主要接受地面人工排泄及大气降水补给,迳流则以垂直运动为主,主要排泄方式为侧向迳流和大气蒸发。本次勘察测得孔隙上层滞水水位埋深 0.35 米~0.70 米(高程为 29.57~30.35 米)。

孔隙承压含水层在本场地勘探深度范围内主要表现为赋存于第⑦层粉砂~ ⑨层圆砾中的孔隙水,与区域承压含水层连通,由层间侧向迳流补给、排泄,与 长江具有较强的水力联系。本次勘察期间测得场区内承压水水头埋深约为 3.80 米(高程 26.70 米)。近三年中,该承压水于本场地所在区域其年水位变幅为 2.00~3.00m。

6.1.5.2.2 地下水动态

本地区气候条件,荆州市属北亚热带季风湿润气候区,具有四季分明、热量丰富、光照适宜、雨水充沛、雨热同季、无霜期长等特点,年辐射总量 4366.8~

4576.2 兆焦耳/平方米,年日照时数 1823~1978 小时,日照率为 41%~44%。 年均气温 16.2° C~16.6° C,无霜期 250~267 天,年降水量 1100~1300mm 左 右。

场地其深层孔隙承压水的水头主要受长江水位影响,即随长江水位变化而变化,态势明显,一般每年一、二、三、四、十、十一、十二月为地下水枯水期,水位低。而五、六、七、八、九月为丰水期,尤其七、八两月正值长江汛期高水位期地下水位亦较高。

工程地质剖面现下图:

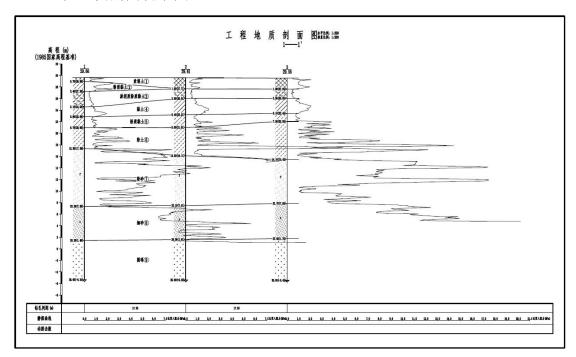


图 6-17 工程地质剖面 1

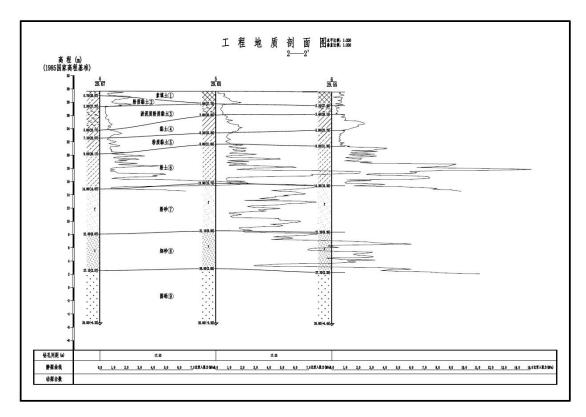


图 6-18 工程地质剖面 2

6.1.5.3 地下水的补给、径流、排泄条件

区内地下水的补给来源有大气降水、渠系渗漏补给、灌溉入渗补给、侧向 径流补给、越流补给及洪水散失补给等。其中,大气降水、引江渠系渗漏及越 流补给是地下水重要的补给源,其补给量占到了地下水总补给量的 60%以上。

孔隙潜水主要补给来源包括降水入渗补给、田间回归入渗补给、河渠侧渗补给、越流补给等。由于长江等河流切穿或切割了隔水顶板,使得地表水体与上部孔隙承压水相通或者缩短渗入补给途径,上部孔隙承压水的补给来源包括周边临区含水层的侧向径流补给、河流湖泊的侧向渗透补给、上覆潜水越流补给。由于地形高差较小,隔水层顶板基本水平,水位埋深相差较小,地下水总的流向为自西北流向东南,水力坡度仅为 0.3%~0.5%,径流速度约为0.005~0.01m/d,天然条件下大部分地区地下水的径流条件是较差的,但是由于长江高水位和开采地下水的影响,在沿江地带和开采区径流条件则比较好。上部孔隙承压水在研究区无天然露头,主要排泄方式为向邻区径流排泄和人工开采排泄两种,仅在枯水期局部沿江地段承压水才排泄于长江。

在天然条件下,上部孔隙承压水由于上覆浅层孔隙潜水含水层,不能直接接受大气降水补给,其主要的补给来源包括:周边临区含水层的侧向径流补给、

河流湖泊的侧向渗透补给、上覆潜水越流补给。下部裂隙孔隙承压水的补给来源主要包括上部孔隙承压水的越流补给,周边含水层的侧向径流补给以及局部地段河流的侧向渗透补给等。

6.1.5.4 包气带防污性能

包气带是连接大气和地下水的重要纽带,在大气降水补给地下水以及地下水通过包气带蒸发过程中扮演着重要的角色。包气带特别是包气带上部的土壤是植物赖以生长的基础,是人类生存环境的重要组成部分。

如果包气带受到污染,将对周围植物造成影响,并且包气带污染会进一步 引起地下水污染,因此应对评价区包气带防污性能进行分析,为进一步采取预 防措施提出科学依据。

污染物从地表进入潜水含水层,必然要经过包气带,包气带的防污性能强弱直接影响着地下水的污染程度和状况。通常包气带的防污性能与包气带的岩性、结构、厚度以及地形坡度等有着密切的联系。其中,岩性和厚度对包气带防污性能影响较大,包气带土壤沉积物中的粘土矿物和有机碳在吸附无机离子组分和有机污染物过程中发挥着非常重要的作用,特别是有机污染物,很容易分配到有机碳中,在一定条件下又能被大量粘土矿物所吸附。包气带土层对污染物的吸附可以延滞有机污染物向地下水中迁移,且包气带的厚度越大,污染物越难以迁移进入地下水。因此,包气带土层的粘土矿物、有机碳的含量、厚度,在很大程度上制约着评价区浅层地下水受地表污染源的影响程度。

根据评价区的勘查资料,评价区包气带岩性主要为粘土及粉质粘土。由于评价区包气带岩性多为粘土和粉质粘土,粘土和粉质粘土吸附阻滞污染物迁移能力较强,因此评价区包气带防污性能中-强。

6.1.5.5 地下水环境影响预测

本工程地下水评价等级为二级。根据《环境影响评价技术导则 地下水环境》 (HJ610-2016)相关要求:根据 GB16889、GB18597、GB18599、GB50934标准进行地下水污染防渗措施的建设项目,可不进行正常状况情景下的预测。因此这里正常工况仅对地下水环境影响进行分析,事故工况下开展地下水预测计算。

6.1.5.5.1 正常工况下地下水环境影响分析

本工程建成投产后,在正常情况下废水经过厂区现有污水处理站预处理进入园区污水管网,经荆州申联环境科技有限公司污水处理厂处理达标后外排长江。废水的收集与排放全部通过明沟和管道进行,不直接和地表联系,因而不会通过地表水和地下水的水力联系引起地下水水质变化。本工程在开发建设阶段,在充分做好污水管道的防渗处理,各水池混凝土池体采用防渗混凝土,池体内表面涂刷水泥基渗透结晶型防渗涂材,杜绝污水渗漏,确保污水收集处理系统衔接良好,严格用水管理,防止污水"跑、冒、滴、漏"现象发生,可以很大程度的消除污染物排放对地下水环境的影响。项目建成后,厂区内雨水经排水明沟汇集至厂区事故池处理后回用于生产不外排,中后期雨水经管道进入园区雨水管网,可避免雨水夹带污染物质漫流出厂影响周围地下水质。

公司厂区现有项目的危废暂存库、消防水池、事故池、污水管线、污水处理站、生产装置区、储罐区、仓库等均按照《危险废物贮存污染控制标准》(GB18597-2001,2013年修订)要求建设,确保防渗层的渗透系数满足相应的防护标准要求,防止污染地下水。正常情况下,对地下水的污染主要是由于污染物迁移穿过包气带进入含水层造成。项目场地进行了混凝土硬化,防止雨水冲刷外流下渗而对地下水造成污染。

建设单位根据项目厂区各单元特点开展分区防治,在确保各项防渗措施得以落实,并加强维护和厂区环境管理,定期开展项目下游地下水水质监测,制定和落实地下水风险事故应急响应预案的前提下,可有效控制厂区内的废水污染物下渗现象,避免污染地下水,因此正常工况项目运营对区域地下水环境影响较小。

6.1.5.5.2 非正常工况下地下水环境影响分析

(1) 预测原则

项目地下水环境影响预测原则为:

- ①考虑到地下水环境污染的隐蔽性和难恢复性,遵循环境安全性原则,为评价各方案的环境安全和环境保护措施的合理性提供依据。
- ②预测的范围、时段、内容和方法根据评价工作等级、工程特征与环境特征,结合当地环境功能和环保要求确定,以拟建项目对地下水水质的影响及由 此而产生的主要环境水文地质问题为重点。

(2) 预测因子

根据本项目废水水质情况,选择废水中主要污染物为预测特征因子。因此, 本项目选取耗氧量进行预测。

(3) 项目地下水污染源分析

①施工期环境污染源

本次改造项目施工期的主要工程行为包括厂房修建、设备安装等。施工期的污染源主要来自施工过程中施工机械跑冒滴漏产生的油污污染、施工废水若收集处理不当进入地下水系统后可能对地下水造成污染。

②运营期环境污染源

根据《环境影响评价技术导则--地下水环境》(HJ610-2016),本项目分区 防控措施应根据建设项目场地天然包气带防污性能、污染控制难易程度和污染 物特性提出防渗技术要求。在采取上述分区防渗措施后,本项目地下水污染源 主要为事故及初期雨水池,见下表。

产污构筑物	数量 (座)	面积(m²)	平均水深 (m)	总占地面 积(m²)	防渗措施
事故及初期雨 水池	1	35×30	1.7	1050	渗透系数 1×10 ⁻⁷ cm/s

③计算公式及结果

非正常状况下,主要泄漏源为初期雨水池。假设池体中废水下渗进入地下水系统符合达西定律,渗滤液下渗量可按下式计算:

$$Q = K \times i \times A$$

式中: O——下渗量(m³/d);

K——渗透系数(8.64×10⁻⁵m/d);

i——水力坡度(0.05, 无量纲);

A---面积 (m²)。

根据项目设计,可获取池体设计尺寸及填埋区面积,并根据各构筑物的防 渗设计,可以计算出各工况下的水力坡度,再根据有关资料对防渗层的渗透系 数进行取值后,便可计算出各工况下各构筑物污水下渗量(各构筑物下渗量结 算结果见下表)。

表 6-36 非正常工况废水下渗量计算结果

产污构筑物	非正常状况(L/d)	非正常状况合计(L/d)		
事故及初期雨水池	4.536	4.536		

根据计算结果,非正常状况下,池体防渗系统正常运行总下渗量为 4.536L/d。 工程运营期间,应加强管理与监测,尤其防范非正常状况的发生,使工程运营 对地下水环境的影响降至最小。

(4) 本项目地下水预测与评价

根据工程分析,非正常状况下厂区主要污染源为事故及初期雨水池。根据估算,非正常状况下主要泄漏来自事故及初期雨水池下渗量为 4.536L/d,厂区污染物源强见下表。

 工况

 耗氧量

 废水量 (L/d)
 4.536

 污染浓度 (mg/L)
 70

 污染源强 (mg/d)
 181.44

 《地下水质量标准》(GB/T14848-2017)
 ≤3.0mg/L

表 6-37 厂区非正常状况下渗废水源强

A.预测方法

根据工程分析,厂区内构筑物种污水入渗为连续注入时,地下水污染溶质 迁移模拟公式参考《环境影响评价技术导则--地下水环境》附录中推荐的瞬时注 入示踪剂--平面连续点源公式,使用式 7-1、7-2 进行计算。

$$C(x, y, t) = \frac{1000 \text{m}_{t}}{4\pi M n t \sqrt{D_{x} D_{y}}} e^{\frac{x u}{2D_{x}} [2K_{0}(\beta) - W(\frac{u^{2} t}{4D_{x}}, \beta)]}$$

$$\beta = \sqrt{\frac{u^{2} x^{2}}{4Dx^{2}} + \frac{u^{2} y^{2}}{4D_{x} D_{y}}}$$
(\times \frac{\pi}{2} \frac{\pi}{5}, 1.5-1)

式中: $x \times y$ --计算点处的位置坐标 m; t--时间, d;

C(x, y, t) --t 时刻点 x, y 处的示踪剂浓度, mg/L;

M--含水层厚度(根据区域水文地质资料含水层平均厚度约为40m);

M_t--单位时间注入的示踪剂质量, kg/d;

u---水流速度, m/d;

n--有效孔隙度,无量纲(该类地层取值 $0.1 \sim 0.2$);

Dx--纵向弥散系数, m²/d;

Dy--横向弥散系数, m²/d;

Ⅱ--圆周率;

$$K_0(\beta)$$
 —第二类零阶修正贝塞尔函数;

$$W(\frac{\mathbf{u}^2t}{4D_x}, \boldsymbol{\beta})$$
 —第二类零阶修正贝塞尔函数;

B.预测结果

根据水文地质试验成果及有关文献报道,计算参数取值为:有效孔隙度 0.1,纵向弥散度 1m²/d,横向弥散度 0.2m²/d。预测时不考虑污染物的吸附及降解。计算厂区事故及初期雨水池下渗各年份地下水中耗氧量污染物扩散浓度值见下表。

X(m) Y (m)	1	10	30	50	100	300	500	700	800	1000
1	0.015	0.0075	0.0075	0	0	0	0	0	0	0
10	0.0075	0.0075	0	0	0	0	0	0	0	0
30	0.0075	0	0	0	0	0	0	0	0	0
50	0	0	0	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0	0	0	0
300	0	0	0	0	0	0	0	0	0	0

表 6-39 非正常状况下地下水中耗氧量污染物的浓度(1000d,单位 mg/L)

X (m) Y (m)	1	10	30	50	100	300	500	700	800	1000
1	0.03	0.0225	0.015	0.015	0.0075	0.0075	0.0075	0	0	0
10	0.0225	0.015	0.015	0.015	0.0075	0	0	0	0	0
30	0.015	0.015	0.0075	0.0075	0	0	0	0	0	0
50	0.015	0.0075	0.0075	0.0075	0	0	0	0	0	0
100	0.0075	0.0075	0.0075	0.0075	0	0	0	0	0	0
300	0	0	0	0	0	0	0	0	0	0
500	0	0	0	0	0	0	0	0	0	0

由预测结果,非正常状况下厂区运行 1000d 后,废水下渗导致地下水系统中耗氧量的最大贡献值达到为 0.03mg/L,沿地下水下游方向迁移 700m 后至 0.01mg/L,基本恢复地下水本底值。因此,正常状况下,厂区下渗废水不会导致地下水中耗氧量污染物含量超标(标准值:≤3.0mg/L)。

6.1.5.6 地下水环境影响结论

A.项目施工对地下水环境的影响分析

本项目的主要工程行为构筑物新建、机械设备安装等,施工作业中机械跑冒滴漏产生的油污污染、施工人员产生的生活废水若收集处理不当进入地下系统后可能对地下水造成污染。环评建议,采取如施工区建临时污水收集系统,收集施工废水统一处理;车辆冲洗废水中泥沙和石油类含量较高,应在施工场地设置临时沉沙池,经隔油沉淀处理后全部循环利用,不外排。在采取上述措施的条件下,项目施工产生废水对地下水环境的影响较小。

B.项目运行期对区域地下水水质的影响评价

根据预测结果,厂区各产污构筑物按照地下水评价要求进行防渗处理后,非正常状况下,事故及初期雨水池下渗废水不会导致其周围地下水中污染物浓度明显增加。项目运行 1000d 后,初期雨水池下渗对周围地下水的污染离子的贡献值基本达到稳定,耗氧量的最高贡献值分别为 0.03mg/L,均远低于《地下水质量标准》(GB/T14848-2017)Ⅲ类标准限值。综上,项目非正常状况运行不会对场区下伏含水层产生影响。

6.1.6 土壤环境影响评价

6.1.6.1 影响识别

(1) 废气对土壤环境的影响

污染物质来源于被污染的大气,污染物质主要集中在土壤表层,其主要污染物是大气中的 HCl、VOCs 等。各种大气飘尘降落地面,会造成土壤的多种污染。

(2) 废水对土壤环境的影响

废水和生活污水未经处理直接排放,或发生泄漏,致使土壤受到硫酸、无机盐、有机物和病原体的污染。

本项目废水收集输送采用密封管道,进入厂区污水处理站处理,然后进入 荆州申联环境科技有限公司污水处理厂处理达标后排放,因此正常运行情况下 对土壤无影响。

(3) 固体废物对土壤环境的影响

固体废物在储存过程中渗漏进行土壤,致使土壤受到硫酸、无机盐、有机物的污染。本项目固体废物储存场所按要求进行了防渗,因此正常运行情况下对土壤无影响。

因此本次土壤评价正常情况下主要考虑废气通过大气沉降对土壤的影响。

 不同时段
 污染影响型

 大气沉降
 地面漫流
 垂直流入
 其他

 建设期
 /
 /
 /

/

/

表 6-40 建设项目土壤环境影响类型与影响途径表

表 6-41	本项目和同期建设项目土壤外境影响源及影响因于识别表

污染源	工艺流程/节点	污染途径	污染指标(t/a)	特征因子
1#排气筒	酯化反应	大气沉降	0.063	HCl
2#排气筒	工艺废气	大气沉降	0.011	VOCs
3 #排气筒	工艺废气	大气沉降	0.300	HCl
3#1H- (, ¤]	上乙次(/ (<i>1)</i> []年	0.735	VOCs
1#储罐区无组织	大小呼吸	大气沉降	0.273	VOCs
2#储罐区无组织	大小呼吸	大小呼吸 大气沉降 0.111		VOCs

6.1.6.2 土壤理化性质

服务期

服务期满

土壤剖面综合分析:据 21 个土壤削面综合分析;土体构型为 A-P-Wc-W、 A-P-Wc-C。 耕作层厚 11-23cm, 平均 16cm, 灰棕(5YR 5/2)、灰(5Y 5/1)、棕 (7.5YR 4/6)、栗(1OYR 4/3), 轻壤或中壤,团粒状或团块状,松散,无根系, 有鳝血斑块, 无石灰反应, pH 值在 5.4-7.0 之间; 犁底层厚 5-17cm, 平均 lOcm, 灰(5Y 5/1), 棕灰(7.5YR 5/2), 暗黄棕(10YR 5/4), 轻壤或中壤,块状,紧实, 较多根,有根绣条纹,无石灰反应; 平泥层出现深度多在犁 底层之下、50cm 以上,厚 16-68cm,平均 37cm,灰棕(5YR 5/2)、棕灰(7.5YR 5/2)、褐 (2.5Y 6/3), 栗(10YR 4/3), 重壤和粘土, 势块状或棱柱状, 极紧或紧实, 极少量根系, 有灰 色胶膜、铁锰斑块及结核等新生体, 具弱至中度亚饫反应, 无石灰反应, 潴育 层厚 21.56, 平均 32cm, 黄棕(10YR 5/8)、棕(7.5YR 4/6)、灰黄(2.5Y 7/3), 轻壤 至重重壤柱状 或块状,紧实,有灰色胶膜、铁锰斑纹及结核等新生体,无或弱 亚铁反应,无石灰反应。生产性能:夹泥潮沙泥田耕作层质地适中,干温易耕, 耕作质量尚可: 有机质含量 较丰富, 结构体好。保肥蓄水能力强, 耐旱耐肥, 不择肥,不背肥。因土体中上部有夹 泥层,水分渗量小,早春土温回升较慢, 供肥迟缓,后劲足,水稻生育前期迟发,后期列往往出现疯长。夹泥层的危害 作用表现在: 滞水造成次生潜育, 阻碍植株根系正常下扎。故利用上-是有条件

的地方因地制宜翻泥改土; 二是开沟防渍,实行水旱轮作;三是鉴于其耕层速效磷、钾不足;应重施磷、钾肥、并适当控制氮肥施用量,以协调耕层 三要素比例。

典型剖面物理、化学性质: A 层相对厚度 18cm, 颗粒组成 2-0.2mm 占 14.4%, 0.2-0.02mm 占 39.9%, 0.02-0.002mm 占 27.5%, 小于 0.002mm 占 18.2%。 P 层相对厚度 9cm, 颗粒组成 2-0.2mm 占 18.6%, 0.2-0.02mm 占 29.8%, 0.02-0.002mm 占 31.1%, 小于 0.002mm 占 20.5%。Wc 层相对厚度 32cm, 颗粒组成 2-0.2mm 占 12.8%, 0.2-0.02mm 占 30.8%, 0.02-0.002mm 占 24.4%, 小于 0.002mm 占 32%。W 层相对厚度 41cm, 颗粒 组成 2-0.2mm 占 23.1%, 0.2-0.02mm 占 34.9%, 0.02-0.002mm 占 28.3%, 小于 0.002mm 占 15.7%。

6.1.6.3 预测评价范围

同现状调查范围一致(项目场地内及占地范围外 0.2km 范围内)。

6.1.6.4 预测评价时段

运行期 1a、5a、10a。

6.1.6.5 预测与评价因子

根据工程分析,本项目排放 HCl,可能造成土壤酸化,因此选取 pH 为关键预测因子。

6.1.6.6 预测方法

根据《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)附录 E.1 方法一,单位质量土壤中某种物质的增量可采用下式计算:

$$\Delta S = n(I_s - L_s - R_s)/(\rho_b \times A \times D)$$

式中: ΔS ——表层土壤中游离酸或游离碱 浓度增量, mmol/kg。

Is——预测评价范围内单位年份表层土壤中游离酸、游离碱输入量, mmol。

Ls——预测评价范围内单位年份表层土壤中游离酸、游离碱经淋溶排出的量, mmol。

Rs——预测评价范围内单位年份表层土壤中游离酸、游离碱经径流排出的量, mmol。

ρ_b——表层土壤容重, kg/m³。

A——预测评价范围, m^2 。

D——表层土壤深度,一般取 0.2m,可根据实际情况调整。

n——持续年份, a。

pH 预测值,如下式:

$$pH = pH_b + \Delta S/BC_{pH}$$

式中: pHb——土壤 pH 现状值。

BC_{pH}——缓冲容量, mmol/(kg.pH)。

6.1.6.7 预测结果及分析

表 6-42 土壤环境影响预测结果一览表

项目	污染物	Is	Ls	Rs	ρ _b	A	D	n	ΔS	pH_b	рН
		204.1	0	0	1300	100275	0.2	1	7.82777E-06	7.600	7.600
pH 计 算值	HCl	204.1	0	0	1300	100275	0.2	5	3.91388E-05	7.600	7.600
		204.1	0	0	1300	100275	0.2	10	7.82777E-05	7.600	7.600

预测结果表明,本项目和同期建设项目运行期第1年、第5年、第10年土壤中pH的环境影响预测叠加值分别为7.6、7.6,7.6。对比《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)附录D.2 土壤酸化、碱化分级标准,本项目叠加值为无酸化或碱化,土壤环境影响小。

6.1.6.8 预测评价结论

建设项目运营期,项目占地范围内土壤中特征因子在不同年份均的环境影响预测值满足《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地筛选值要求。

表 6-43 土壤环境影响评价自查表

	工作内容	完成情况	备注
	影响类型	污染影响型☑;生态影响型□;两者兼有□	
影	土地利用类型	建设用地☑;农用地□;未利用地□	土地利用 类型图
响识	占地规模	$(11.7) \text{ hm}^2$	
别	敏感目标信息	敏感目标()、方位()、距离()	
	影响途径	大气沉降回;地面漫流口;垂直入渗口;地下水位口; 其他口	

	全部污染物			HCl	VOCs				
	特征因子			H					
	所属土壤环境影响								
	评价项目类别	I 类E	√ ;	II 类☑;	III 类□;	IV	类□		
	敏感程度	每	敏感□; 较敏感□; 不敏感☑						
	评价工作等级		一级口;二级区;三级口						
	资料收集		a) 🗹	í; b) □;	c) □;	d)☑			
	~m /l. bl ==	土体构型为 A	-P-W			排作)	丟厚 11-23cm,		
	理化性质			· 均 1				同附录 C	
			占掛		占地范围	引外	深度		
现	 现状监测点位	表层样点数		4	2		0.2m	点位布置	
火状	, , , , , , , , , , , , , , , , , , , ,	柱状样点数		3	1		3.0	图	
调查内容	现状监测因子	乙烯, 顺-1,2-	に、1, 二、1,1, 二、二、 二、二、 、基 港 、基 港	1-二氯乙 【乙烯,质 1,2- 四氯 【乙烷,1, 【乙烯,苯 乙烯,甲 、苯胺,2	烷、1,2-二 z-1,2-二 之烷,1,1 1,2- 三 w 表, 東 大 東 大 大 大 大 大 大 大 大 大 大 大 大 大	二氯乙烷 [乙烷],2,2 [乙烷] 1,2 甲苯 長并[a	乙烷,1,1-二氯 6, 二氯甲烷, 四氯乙烷,四 i, 三氯乙烯, -二氯苯,1,4- + 对二甲苯, i]蒽, 苯并[a]	45 项全测	
现	评价因子			同现状出	监测因子				
状评	评价标准	《土壤环境 (GB3			土壤污染 第二类用:				
价	现状评价结论			达	标				
EI.	预测因子			p	Н				
影响	预测方法	Ī	附录	E☑;附ā	℟ F□其他	()			
预	预测分析内容	累	彡响 剂	5围()	影响程度	(√)			
测	预测结论						i论: a) □; b)		
防	防控措施	土壤环境质量	现状	·保障☑源 他		; 过	程控制口;其		
治	阳岭水湖	监测点数		监测	指标		监测频次		
措施	跟踪监测	罐区附近		45 项全	测、pH	车	身5年一次		
76	信息公开指标			检测					
注 1:	"口"为勾选项,	可√; ()为内容	√; ()为内容填写项; "备注"为其他补充内容。 注 2:需§						

注 1: "口"为勾选项,可√; ()为内容填写项; "备注"为其他补充内容。 注 2:需要分别 开展土壤环境影响评价工作的,分别填写自查表。

6.1.7 生态环境影响预测评价

项目选址位于荆州市沙市化工园区现有厂区内。项目在施工过程中,土地 平整将会造成一定量的水土流失,应当合理安排施工时间,避免大雨、暴雨期 大填大挖的前提下,在严格落实本项目水土保持方案中提出的措施及水管部门

的审批意见的前提下,项目施工期水土流失的影响较小,在环境承受能力范围内。另项目的运营期将排放一定量的废气和废水,对附近的动植物产生一定的影响,通过采取一系列环保措施,可最大程度的减轻该项目排放的污染物对周边生态环境的负面影响。

本工程厂区内绿化布置采用点、线、面方式,充分利用不宜建筑的边角隙 地,对不规则用地进行规则化处理,取得别开生面的环境美化效果,重点在厂 房区绿化,做到绿化层次分明。主要道路两侧利用乔木、灌木及草本植物组成 绿化带,充分发挥绿化对道路及道路两侧建筑的遮荫、美化等方面的作用。管 线用地上绿化,种植的乔、灌木应满足有关间距要求,架空管线下,铺设草坪, 种植花卉,使整个厂区构成一个优美的空间环境。厂区绿化实施后,将减轻项 目建设对区域生态环境的影响。

6.2 施工期环影响预测评价

6.2.1 大气环境影响预测评价

施工废气的主要来源:施工扬尘、管线开挖扬尘、交通运输产生的道路扬尘、汽车尾气和挖掘机、推土机外排废气,主要污染物为TSP、SO₂、NO₂、CO和HC。

扬尘排放方式主要为无组织间歇性排放,其产生受风向、风速和空气湿度等气候条件及施工方式、开挖裸露面积大小、物料运输车辆的装载方式、车辆的行驶速度、施工区和运输线路下垫面等因素的影响,其中混凝土拌和的污染最严重,根据类似工程监测,在混凝土拌和作业点 300m 范围内,TSP 浓度超过《环境空气质量标准》中二级标准。据有关资料,产生扬尘颗粒物粒径分布如下: <5μm 占 8%、5~50μm 占 24%、>20μm 占 68%,施工现场有大量的颗粒物粒径在可产生扬尘的粒径范围之内,容易造成粉尘污染。据类似工程监测,颗粒物经过一定自然沉降作用后,在离施工现场 50m 处,TSP 日均浓度为1.13mg/m³,超出《环境空气质量标准》中二级标准限值 2.8 倍;在离施工现场200m 处,TSP 日均浓度 0.47mg/m³,超出《环境空气质量标准》中二级标准限值 0.6 倍。

燃油机械和汽车尾气中的主要污染物为 SO₂、NO₂、CO 和 HC。由于施工机械多为大型机械,单车排放系数较大,施工机械数量少且分散,其污染程度

相对较轻。据类似工程监测,距离现场 50m 处,CO、NO₂ 小时平均浓度分别为 0.2 mg/m³ 和 0.062 mg/m³,均可达到《环境空气质量标准》(GB3095-2012)二级标准浓度限值,对周围环境影响不大。

施工现场环境空气质量现状较好,环境容量较大,因此,各施工场区所排放的大气污染物不致对区域大气环境产生影响。

另外,施工期运输车辆运行将产生道路扬尘,扬尘污染在道路两边扩散,最大扬尘浓度出现在道路两边,随着离开路边的距离增加浓度逐渐递减而趋近于背景值,一般条件下影响范围在路边两侧 30m 以内。因此,车辆扬尘对运输线路周围小范围大气造成一定程度的污染,但工程完工后其污染也随之消失。

6.2.2 地表水环境影响预测评价

施工期废水来源主要为工程施工废水和生活污水。其中工程施工废水包括施工机械冷却水及洗涤用水、施工现场清洗、建材清洗、混凝土浇筑、养护、冲洗等,这部分废水有一定量的油污和泥沙。施工人员的生活污水含有一定量的有机物和病菌。雨季作业场面的地面径流水,含有一定量的泥土和高浓度的悬浮物。

要求施工单位在施工现场设置临时集水池、沉砂池等临时性污水简易处理设施,施工废水经沉淀后可回用,生活污水经化粪池预处理后排入园区污水管网进入荆州申联环境科技有限公司污水处理厂深度处理。采取以上措施后,能有效地控制对水体的污染,预计施工期对水环境的影响较小。随着施工期的结束,该类污染将随之不复存在。

6.2.3 声环境影响预测评价

(1) 噪声源

施工期噪声主要分为机械噪声、施工作业噪声和施工车辆噪声。机械噪声主要由施工机械所造成,如铲平机、压路机、搅拌机等,多为点声源;施工作业噪声主要指施工过程中零星的敲打声、装卸车辆撞击声、拆卸模板的撞击声等,多为瞬时噪声;施工车辆的噪声属于交通噪声。其噪声源源强范围为84~114dB(A)。

(2) 噪声影响预测

施工期噪声源可视为点声源,根据点声源噪声衰减模式,估算出施工期间

离声源不同距离处的噪声预测值。计算模式如下:

$$L(r) = L(r_0) - 20lg\left(\frac{r}{r_0}\right)$$

式中: L(r)——距声源 r 米处的施工噪声预测值, dB(A);

L (r0) ——距声源 r0 米处的施工噪声预测值, dB (A);

各种施工机械在不同距离处的噪声预测值如下表 6-40。

表 6-44 各施工机械在不同距离处的噪声预测值 单位: dB(A)

噪声源					衰减距	离(m)				
荣户 <i>你</i>	0	15	25	50	75	100	150	200	300	400
挖掘机	114	78.2	75.4	66.8	62.6	59.5	55.1	51.9	47.4	44.1
压路机	104	68.2	65.4	56.8	62.6	49.5	45.1	41.9	37.4	34.1
铲土机	110	74.2	71.4	62.8	58.6	55.5	51.1	47.9	43.4	40.1
自卸卡车	95	59.2	56.4	47.8	43.6	40.5	36.1	32.9	28.4	25.1
混凝土振捣机	112	76.2	73.4	64.8	60.6	57.5	53.1	49.9	45.4	42.1
混凝土搅拌机	84	48.2	45.4	36.8	32.6	29.5	25.1	21.9	17.4	14.1

(3) 施工期噪声影响分析

施工期噪声的影响随着工程不同施工阶段以及使用不同的施工机械而有所不同,在施工初期,运输车辆的行驶和施工设备的运转是分散的,噪声影响具有流动性和不稳定性,随后打桩机、搅拌机等固定声源增多,其功率大,施工时间长,对周围声环境的影响较明显。施工期噪声的影响程度主要取决于施工机械与敏感点的距离,据表 6-44 所示的预测结果,拟建工程施工期间所产生的噪声,在距声源 50m 处的变化范围在 36.75~66.75dB 之间,可见施工噪声对施工场地附近 50m 范围有一定影响,距离施工场地 200m 时,噪声衰减至 55dB 之内。由于厂区周边 200m 范围内有部分居民敏感点,在施工期间都将受到施工噪声污染的影响,短期内将处于超标环境中。为了保护居民的夜间休息,在晚上22 时至凌晨 6 时应停止施工。此外,建议尽可能集中声强较大的机械进行突击作业,缩短施工噪声的污染时间,尽量避免夜间施工,缩小施工噪声的影响范围。同时,对在大型高噪设备旁工作的人员,要采取防护措施,以免造成身体伤害,如噪声性耳聋及各种听力障碍等疾病。

建议建设单位从以下几方面采取适当的实施措施来减轻其噪声的影响。

- (1) 严禁高噪音、高振动的设备在中午或夜间休息时间作业,施工单位应 选用低噪音机械设备或带隔声、消声设备,禁止在居民点附近使用柴油发电机 组。
- (2) 合理安排好施工时间与施工场所,土方工程应尽量安排多台设备同时作业,缩短影响时间。将施工现场的固定振动源相对集中,以减少振动干扰的范围。特殊情况下夜间要施工时,应向当地环保部门申请,批准后才能根据规定施工,并应控制作业时间,禁止出现夜间扰民现象。加强施工区附近交通管理,避免交通堵塞而增加车辆噪声。
- (3)施工单位在各敏感区域施工应取得周边居民的理解,尽可能按当居民要求采取必要、可行的噪声控制措施,施工运输车辆进出场地应远离居民点一侧。
- (4) 优化施工方案,合理安排工期,在施工工程招标时,将降低环境噪声 污染的措施列为施工组织设计内容,并在签订合同中予以明确。
- (5) 尽量采用低噪声机械,施工机械设备应事先对其进行常规工作状态下的噪声测量,超过国家标准的机械应禁止其入场施工。移动较大的固定机械设备应加装减振机座,同时加强各类施工设备的维护保养,保持其良好的运行状态,最大限度减小噪声源强。使用商品混凝土,不在施工场地内设置混凝土搅拌机。
- (6)运输车辆禁止超载,车速严格遵守当地道路限速标准,运输路线应尽量避开集中居民住宅区域,禁止夜间运输,同时车辆经过敏感点时禁止鸣笛。
- (7) 应注意合理安排施工物料的运输时间。在途经道路沿线居民等敏感建筑时,以避免施工车辆噪声对沿线的居民生活产生影响。运输车辆进出施工场地应安排在远离住宅区的一侧,在施工现场设置高度不低于 3m 的硬质围挡。
- (8)施工监理单位应做好施工期噪声监理工作,配备一定数量的简易噪声测量仪器,对施工场所附近的居民点进行监测,以保证其不受噪声超标影响。

根据《中华人民共和国环境噪声污染防治条例》的规定,若采取降噪措施后仍达不到规定限值,特别是发生夜间施工扰民现象时,施工单位应向受此影响的组织或个人致歉并给予赔偿。

项目在施工严格落实上述噪声减缓措施,可有效降低施工期噪声对外环境的影响。随着施工期结束,施工噪声影响也随之消失。

6.2.4 固体废物影响预测评价

该工程施工固废主要为施工弃渣和施工人员日常生活垃圾。

施工弃渣、弃土主要来自基础开挖阶段、管线开挖、土建工程阶段伴随产生的弃土、一些碎砖、水泥砂浆等固体废物。根据工程施工计划,施工期间的弃土弃渣均用于回填场地,多余弃土外运至指点地点。在土石方开挖建设期间,开挖物料的运输将可能产生少量散落现象,如遇雨水冲刷施工现场的浮土和弃碴,可形成水土流失。但建设单位严格落实水土保持方案论证报告中提出的水土保持方案措施和水部门的审批意见,将不会对周围环境造成大的影响。

施工人员日常生活垃圾如果随意堆置,不仅会影响施工区环境卫生,还将为传播疾病的鼠类、蚊、蝇提供孳生条件,进而导致疾病流行,影响施工人员身体健康。因此应做好施工现场垃圾处置及固体废物的管理,尽量避免对人群健康可能产生的不利影响。

7 环境风险评价

7.1 环境风险评价的目的和重点

7.1.1 环境风险评价的目的

根据国家环境保护部《关于进一步加强环境影响评价管理防范环境风险的通知》(环发〔2012〕77号〕及《建设项目环境风险评价技术导则》(HJ169-2018)中相关要求,结合该项目工程分析,本评价按照上述文件及风险评价导则的相关要求,采用项目风险识别、源项分析和后果分析等方法进行环境风险评价,了解其环境风险的可接受程度,提出减少风险的事故应急措施及应急预案,为工程设计和环境管理提供资料和依据,以期达到降低危险,减少危害的目的。

7.1.2 环境风险评价对象

本次环境风险仅针对本项目涉及的区域进行评价,本项目涉及化学物质主要为正硅酸乙酯、二氧化碳、31%碱液、31%盐酸、乙醇等,存在环境风险因素有化学储罐区及管道输送化学品泄漏风险等。

7.2 风险调查

7.2.1 风险源调查

(1) 危险物质情况

对照 HJ169-2018《建设项目环境风险评价技术导则》附录 B,本项目原料、产品、副产物均未列入附录 B 重点关注的危险物质。

(2) 生产工艺情况

对比 HJ169-2018《建设项目环境风险评价技术导则》附录 C表 C.1 行业及生产工艺,本项目所涉及的工艺为化工行业中的"危险物质贮存罐区"。

7.2.2 环境敏感目标调查

- (1) 大气环境风险目标及敏感点:项目大气环境风险保护目标为项目周边 半径 5km 范围内的大气环境,执行《环境空气质量标准》(GB3095-2012)二 级标准,敏感点为环境风险评价范围内的 18 处居民点。
 - (2) 地表水环境风险保护目标及敏感点:长江(荆州城区段)满足《地表

水环境质量标准》(GB3838-2002)中III水质标准。评价范围为荆州申联环境科技有限公司污水处理厂排污口上游 500m 至下游 2km, 其中没有饮用水源保护区、水生物种保护区等特殊的敏感点。

- (3)地下水环境风险保护目标及敏感点:为与项目厂区所在地为同一水文地质单元的地下水环境应满足《地下水质量标准》(GB/T14848-2017)III类水质要求,评价区内无地下水饮用水源保护区等环境敏感点。
- (4) 土壤环境风险保护目标及敏感点:土壤环境风险保护目标为厂界范围内及场界外 200m 范围内的土壤,其中规划为建设用的区域应满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)二类用地筛选值,规划为防护绿地的区域应满足《土壤环境质量 农用地土壤污染环境管控标准》(GB15618-2018)筛选值要求。

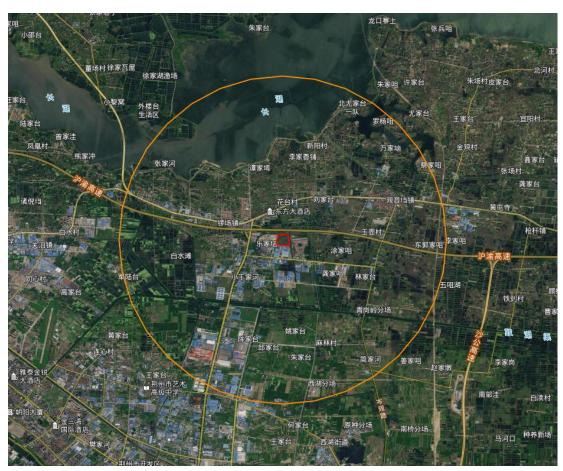


图 7-1 项目周边 5km 范围图

7.3 风险等级判定

7.3.1 危险物质及工艺系统危险性分级

按照 HJ169-2018《建设项目环境风险评价技术导则》, 计算所涉及的每种 危险物质在厂界内的最大存在总量与附录 B 中对应临界量的比值 Q。当存在多 种危险物质时,则按下公式计算物质总量与其临界值比值(Q):

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \dots + \frac{q_n}{Q_N}$$

式中: q_1 、 q_2 、……、 q_n 一每种危险物质的最大存在量,t; Q_1 、 Q_2 、……、 Q_n 一每种危险物质的临界量,t。

当 Q<1 时,该项目环境风险潜势为 I。

当 Q≥1 时,将 Q 值划分为: (1) 1≤Q<10; (2) 10≤Q<100; (3) Q≥100。 本项目原料、产品、副产物均未列入附录 B 重点关注的危险物质,因此本项目 Q<1,可直接判定本项目环境风险潜势为 I。

7.3.2 环境风险等级判定

环境风险评价工作等级划分为一级、二级、三级。根据建设项目涉及的物质及工艺系统危险性和所在地的环境敏感性确定环境风险潜势,按照下表确定评价工作等级。风险潜势为IV及以上,进行一级评价;风险潜势为III,进行二级评价;风险潜势为II,可开展简单分析。

表 7-1 评价工作等级划分

环境风险潜势	IV 、 IV+	III	II	I
评价工作等级	_	=	111	简单分析 a
a 是相对于详细	评价工作内容而	言,在描述危险物质	质、环境影响途径、	环境危害后果、风
险防范措施等方	面给出定性的说	明。见附录 A。		

本项目环境风险潜势为 I, 对比上表, 本项目环境风险评价工作等级为简单分析。

7.4 风险识别

7.4.1 风险识别内容

- (1)物质危险性识别:包括主要原辅材料、燃料、中间产品、副产品、最终产品、污染物、火灾和爆炸伴生/次生物等。
- (2) 生产系统危险性识别:包括主要生产装置、储运设施、公用工程和辅助生产设施,以及环境保护设施等。

(3) 危险物质向环境转移的途径识别:包括分析危险物质特性及可能的环境风险类型,识别危险物质影响环境的途径,分析可能影响的环境敏感目标。

7.4.2 物质危险性识别

本项目危险物质识别结果见下表。

 $\sqrt{}$

 化学品名
 危险物性

 易燃物质
 爆炸物质
 有毒有害
 燃烧产物

 正硅酸乙酯
 ✓
 一氧化碳、二氧化碳、氧化硅

表 7-2 危险化学品识别表

7.4.3 生产系统危险性识别

乙醇

结合厂区平面布置图和物质危险性识别,本次评价将厂区分为3个危险单元,分别为生产车间、储罐区,详见下表。

 $\sqrt{}$

序号	单元功能	容器	主要危险物质
1	生产车间	4#车间、5#车间	正硅酸乙酯、乙醇
2	储罐区	2#储罐区	正硅酸乙酯、乙醇

表 7-3 危险单元划分一览表

7.4.4 环境风险类型及危险性分析

环境风险源是发生突发环境事件的主要源头,可能发生的环境风险类型包括危险物质泄漏,火灾、爆炸等引发的伴生/次生污染物排放、环保设施非正常运行等。影响方式因受体不同分别表现为大气环境污染、水环境污染、土壤污染等。

危险物质主要通过水、大气、地下水、土壤等途径进入环境。本次项目将设置事故应急池收集事故废水和初期污染雨水,采取分区防控的方式进行地下水污染防治,事故状态下的事故废水可以得到有效的收集,也不会直接进入到地下水中。综合看,发生环境风险事件时,本次项目危险物质主要通过大气进入环境中。

7.4.5 主要环境风险识别

通过上述分析,本项目环境风险主要来自生产装置、储罐等,风险识别见下表。

表 7-4 建设项目风险识别表

序号	危险单 元	风险源	主要危险物 质	环境风 险类型	环境影响 途径	可能受影响的环 境敏感目标
1	储罐区	储罐	各类危险化 学品	泄漏、燃 烧、爆炸	大气、地 下水	居住区 周边水体
2	生产装 置	反应釜	各类危险化 学品	泄漏、燃 烧、爆炸	大气、地 下水	居住区 周边水体
3	废气处 理设施	废气处理设施	废气	非正常 运行/停 用	大气	居住区

通过对建设项目各类风险事故分析可知:造成风险事故的隐患取决于安全管理、操作管理水平等方面,事故发生往往是因安全管理方面的缺陷处置不当,在异常状态下,生产设备和工艺方面潜伏下来的一些事故隐患纷纷暴露出来,最终酿成灾难事故,因此,选用先进的工艺、设备,完善安全设施以及提高管理水平是减少事故发生的重要因素。

7.5 风险事故情形分析

7.5.1 事故树分析

事故树分析方法,也称故障树,是预测事故和分析事故的一种科学方法,是从结果到原因找出与灾害有关的各种因素之间因果关系和逻辑关系的分析法,也是"世界银行"、"亚洲银行"贷款项目执行时推荐的方法。这种方法是把系统可能发生的事故放在图的最上面,称为项上事件,按系统构成要素之间的关系,分析与灾害事故有关的原因。通过事故树分析可以找出基本事件及其对顶上事件影响的程度,为采取安全措施、预防事故提供科学的依据。项目顶端事故和各储罐发生泄漏事故的事故树分析详见图 7-2 和图 7-3。

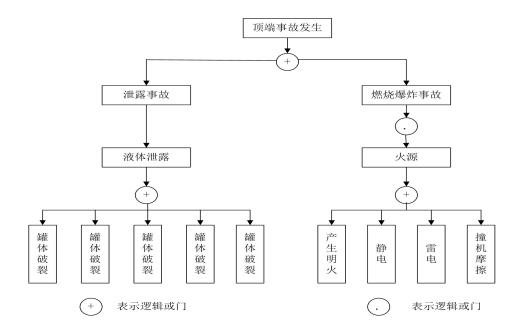


图 7-2 顶端事故发生示意图

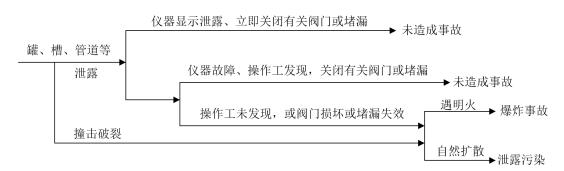


图 7-3 储罐、管道系统事故发生示意图

7.5.2 危险事故规模

根据对我国化工企业目前的安全技术状况所做出的综合分析,毒物泄漏扩散事故一般可以划分为小型、中型、大型三个等级。

(1) 小型泄漏事故

毒物泄漏量较小,泄漏时间较短的事故称为小型泄漏事故。如:因密封材料失效引起冒滴漏造成的蒸气逸散;或因装卸过满造成溢漏等。

对大多数物料而言,小型泄漏事故中形成的有毒蒸气逸散量不大,因此, 扩散危险较小,往往不会引起生产区内环境发生重大变化。

根据目前的安全技术水平判断,小型泄漏事故的发生频率较高。

(2) 中型泄漏事故

毒物泄漏量较大,泄漏时间中等的事故称为中型泄漏事故。如:输送管线

破裂等。

中型泄漏事故可使生产区内环境受到明显影响,并有可能恶化临近区域的 职业安全卫生状况,如:引起火灾爆炸事故和损害作业人员身体健康等。中型 泄漏事故对厂区环境造成危害的程度及其范围会比较明显。

按照我国目前的安全管理水平,只要采取了系统有效的化工区安全生产管理措施,就可以明显减少厂区内发生中型泄漏事故的可能性。因此,中型泄漏事故发生概率较小。

(3) 大型泄漏事故

毒物泄漏量很大,泄漏时间较长的事故称为大型泄漏事故。如:运输工具及其它场所起火爆炸,引起大量毒物泄漏于陆地或大气。

大型泄漏事故一旦发生,项目生产在一定时间内很可能陷于瘫痪,并且往往伸有人员伤亡和财产损失。与此同时,起火爆炸和相应的管路、储罐破损所引起的溢漏、扩散及燃烧等,有可能严重恶化拟建项目临近区域的空气质量。因此,大型泄漏事故是对周围环境安全和构成严重威胁的灾难性重大事故。

本项目设备、管线、阀门等布置较为密集,因此,发生小型泄漏事故的频率较高,该项目采取系统有效的安全生产管理措施后,发生中型乃至大型泄漏事故的可能性较小。

7.5.3 次生/伴生污染

- (1)罐区、生产装置发生火灾爆炸时,容器内会有大量液体或气体向外环境溢出或散发出,其产生的次生污染为火灾消防液、消防土及燃烧废气。
- (2) 当项目罐区中的一个储罐发生火灾、爆炸事故,可能引发邻近储罐发生火灾、爆炸,造成连锁事故。

7.5.4 事故情形分析

本项目风险事故情形中代表性事故包括泄露、火灾、爆炸及次生的污染, 事故发生造成的后果包括轻度危害、中度危害和严重危害,本评价取储罐区正 硅酸乙酯泄漏并发生火灾爆炸事故造成次生污染作为最大可信事故。

本项目事故情形一览下表。

事 7 5	本项目事故情形设定表
₹ /-5	少以日事的

Ī	事故	文类型	风险源	污染物	影响受体
	泄露	液体泄漏	储罐	正硅酸乙酯	大气环境、地下水、土壤
	火灾爆炸	次生污染	正硅酸乙酯储罐 泄露点燃	一氧化碳	大气环境

本项目设置了事故废水收集管网及事故池,可满足各类事故情形的废水收集,事故废水经处理达标后排入污水管网,再经荆州申联环境科技有限公司污水处理厂处理达标后外排长江,事故废水对长江没有直接影响。

7.5.5 最大可信事故的概率

风险分析以概率论为理论基础,受体特征(如水体、大气)和影响物特征(数量、持续时间、转归途径及形式等)视为在一定范围内随机变动的变量,即随机变量,从而进行环境风险分析,历史的事故统计及其概率是预测变更项目装置和工厂的重要依据。最大可信事故概率可以通过事故树分析,确定顶上事件后用概率计算法求得,亦可以通过同类装置事故统计调查确定概率值。

项目参考《建设项目环境风险评价技术导则》(HJ169-2018)附录 E 中泄漏频率的推荐值。各类化工事故泄漏频率见表 7-6。

表 7-6 泄漏频率表

部件类型	泄漏模式	泄漏频率
反应器/工艺储罐/气体储罐/塔器/常压单包容储罐	泄漏孔径为 10mm 孔径 10min 内储罐泄漏完	1.00×10 ⁻⁴ /a 5.00×10 ⁻⁶ /a
储罐	储罐全破裂 泄漏孔径为 10mm 孔径	5.00×10 ⁻⁶ /a 1.00×10 ⁻⁴ /a
常压双包容储罐	10min 内储罐泄漏完 储罐全破裂	1.25×10 ⁻⁸ /a 1.25×10 ⁻⁸ /a
常压全包容储罐	泄漏孔径为 10mm 孔径	1.00×10 ⁻⁸ /a
内径≤75mm 的管道	泄漏孔径为 10%孔径 全管径泄漏	5.00×10 ⁻⁶ / (m·a) 1.00×10 ⁻⁶ / (m·a)
75<内径≤150mm 的管道	泄漏孔径为 10%孔径 全管径泄漏	2.00×10 ⁻⁶ / (m·a) 3.00×10 ⁻⁷ / (m·a)
内径>150 mm 的管道	泄漏孔径为 10%孔径 全管径泄漏	2.40×10 ⁻⁶ / (m·a) 1.00×10 ⁻⁷ / (m·a)
泵体及压缩机	泄漏孔径为 10%最大连接管孔径(最大50mm) 全管径泄漏	5.00×10 ⁻⁴ /a 1.00×10 ⁻⁴ /a
装卸臂	泄漏孔径为 10%连接管孔径(最大 50mm) 全管径泄漏	3.00×10 ⁻⁷ /a 3.00×10 ⁻⁸ /a
装卸软管	泄漏孔径为 10%连接管孔径(最大 50mm) 全管径泄漏	4.00×10 ⁻⁵ /a 4.00×10 ⁻⁶ /a

项目生产装置的管道连接点(小于 75mm)发生全管径泄漏概率为 1.0×10⁻⁶/(m·a);储罐区发生破裂使储存物料泄漏概率为 5.0×10⁻⁶/a。

193

7.5.6 风险可接受分析

事故发生的条件很多,事故发生时的天气条件千差万别具有极大的不确定性,发生事故的排放强度有多种可能。这样对风险事故的后果预测就存在着极大的不确定性。

风险可表述为:

风险(后果/时间)=概率(事故数/单位时间)×危害程度(后果/每次事故)风险的单位多采用"死亡/年"。安全和风险是相伴而生的,风险事故的发生频率不可能为0。通常事故危害所致风险水平可分为最大可接受水平和可忽略水平。表7-7列出了一些机构和研究者推荐的最大可接受风险水平和可忽略水平。

机构或研究者	最大可接受水平(a-1)	可忽略水平(a-1)	备注
瑞典环保局	1×10 ⁻⁶		化学污染物
荷兰建设和环境部	1×10 ⁻⁶	1×10 ⁻⁸	化学污染物
英国皇家协会	1×10 ⁻⁶	1×10 ⁻⁷	
Miljostyrelsen (丹麦)	1×10 ⁻⁶		化学污染物
Travis (美国)	1×10 ⁻⁶		

表 7-7 最大可接受水平和可忽略水平的推荐值

对于社会公众而言最大可接受风险不应高于常见的风险值。在工业和其它活动中,各种风险水平及其可接受程度见表 7-8,根据《建设项目环境风险评价技术导则》(HJ169-2018)中"8.1.2.3 一般而言,发生频率小于 10-6/年的事件是极小概率事件,可作为代表性事故情形中最大可信事故设定的参考"。

风险值 (死亡 /a)	危险性	可接受程度
10-3 数量级	操作危险性特别高,相当于人的自然死亡 率	不可接受
10-4数量级	操作危险性中等	必须立即采取措施改进
10-5 数量级	与游泳事故和煤气中毒事故属同一量级	人们对此关心,愿采取措施预 防
10-6数量级	相当于地震和天灾的风险	人们并不关心这类事故发生
10 ⁻⁷ ~10 ⁻⁸ 数量 级	相当于陨石坠落伤人	没有人愿意为这类事故投资 加以预防

表 7-8 各种风险水平及其可接受程度

根据有关资料,项目重大风险事故的发生概率在10⁻⁶次/年以下。在生产装置发生爆炸事故的情况下可能会造成人员伤亡,其风险值数量级可能达到10⁻⁵,当前国内化工、石化行业可接受风险水平RL为8.33×10⁻⁵(《环境风险评价实

用技术和方法》(胡二邦主编),因此项目最大可信事故风险是可以接受的。

7.6 环境风险分析

7.6.1 有毒有害物质在大气中的扩散

项目正硅酸乙酯储罐泄露后,遇高热、明火有引起燃烧的危险,正硅酸乙酯燃烧会产生一氧化碳,因此本项目发生故事时主要为正硅酸乙酯储罐泄露燃烧产生一氧化碳在大气中扩散。

一氧化碳(carbon monoxide),一种碳氧化合物,化学式为 CO,分子量为 28.0101,通常状况下为是无色、无臭、无味的气体。物理性质上,一氧化碳的 熔点为-205℃,沸点为-191.5℃,难溶于水,不易液化和固化。化学性质上,一氧化碳既有还原性,又有氧化性,能发生氧化反应(燃烧反应)、歧化反应等;同时具有毒性,较高浓度时能使人出现不同程度中毒症状,危害人体的脑、心、肝、肾、肺及其他组织。

一氧化碳在血中与血红蛋白结合而造成组织缺氧。 急性中毒:轻度中毒者出现头痛、头晕、耳鸣、心悸、恶心、呕吐、无力,血液碳氧血红蛋白浓度可高于 10%;中度中毒者除上述症状外,还有皮肤粘膜呈樱红色、脉快、烦躁、步态不稳、浅至中度昏迷,血液碳氧血红蛋白浓度可高于 30%;重度患者深度昏迷、瞳孔缩小、肌张力增强、频繁抽搐、大小便失禁、休克、肺水肿、严重心肌损害等,血液碳氧血红蛋白可高于 50%。部分患者昏迷苏醒后,约经 2~60 天的症状缓解期后,又可能出现迟发性脑病,以意识精神障碍、锥体系或锥体外系损害为主。

因此,本项目发生事故时有毒有害物质在大气中的扩散会对周边环境敏感目标造成一定的影响。

7.6.2 有毒有害物质进入水环境的方式

若厂区发生环境风险事故,产生的事故废水量共 1407.52m³。本项目新厂区 拟设置一座 1785m³的事故及初期雨水池,能够接纳本项目和同期建设项目全部 事故废水,确保全部收集不会溢出污染周边地表水体。废水和雨水总排口分别 设置电动控制阀,一旦发生事故关闭阀门,事故后适当开启,将废水分批引入 污水管网。本项目的生产车间、储罐区、事故及初期雨水池均铺设防水层,防

止废水渗透污染地下水和土壤。污水管采用明管铺设下设防渗沟,一旦破裂可 迅速发现,避免废水大量泄漏渗透。

有毒有害物质进入地下水环境预测详见地下水环境影响预测。

7.6.3 地下水环境风险事故分析

根据地下水环境影响预测与评价章节,项目的非正常工况情景设置为事故及初期雨水池池底破损,防渗层失效,废水下渗至地下水环境中对地下水造成污染。根据地下水环境影响章节分析可知,非正常状况下,事故及初期雨水池下渗废水不会导致其周围地下水中污染物浓度明显增加。项目运行1000d后,初期雨水池下渗对周围地下水的污染离子的贡献值基本达到稳定,耗氧量的最高贡献值分别为0.03mg/L,均远低于《地下水质量标准》(GB/T14848-2017)III类标准限值。综上,项目非正常状况运行不会对场区下伏含水层产生影响。

7.6.4 土壤环境风险事故分析

根据土壤环境影响预测与评价章节,大气沉降的 HCl 不会对周围土壤造成酸化,项目主导风向下风向用地性质为工业用地,因此废气非正常排放发生时对周围土壤的安全影响不大。

7.7 风险管理

7.7.1 风险防范措施

7.7.1.1 选址、总图布置和建筑安全防范措施

该项目平面布置满足生产工艺流程的要求;结合风向、朝向等当地自然条件,因地制宜进行布置,力求总平面布置紧凑合理;总平面布置符合防火间距,满足消防要求;合理布置厂内外道路,使厂内运输便捷,功能区划分明确,厂外交通方便。

厂区布置按照生产类别分厂前区、生产区、辅助生产区等,各功能分区之 间采用道路分隔。

车间内及储罐区爆炸危险区域的范围划分符合现行国家标准《爆炸和火灾 危险环境电力装置设计规范》的规定要求。

厂房设计符合防火、防爆要求,其墙上预留洞,洞口堵漏填实材料均采用 非燃烧体。

生产车间内的外门设置为外向开启的安全疏散门,内门设置为向疏散方向 开启,符合安全生产要求。

厂区有爆炸危险的房间门窗均采用安全玻璃。

车间采用不发火花、不产生静电的地面(如不发火水磨石地面、不发火水泥地面、涂料面层等)。生产装置内可能散发比空气重的可燃气体,因此控制室、配电室的室内地面比室外地坪高 0.6m。

装置内建筑物(除特殊情况外)的耐火等级不低于二级。

车间设有两个(或更多)安全疏散梯,除封闭楼梯间外,作为第二疏散出口的室外梯和每层出口处平台,采用非燃烧材料制作。平台的耐火极限不低于1h,楼梯段的耐火极限不低于0.25h,楼梯周围2m范围内的墙上,除疏散门外,不设其他门窗洞口。

车间内紧靠防火墙两侧的门窗洞口之间最近的水平距离大于或等于 2m。

用于保温、隔声的泡沫塑料制品,其各项指标在设计上要求达到阻燃要求: 聚氨酯泡沫塑料的氧指数不得小于 26:聚苯乙烯泡沫塑料的氧指数不得小于 30。

厂区各建筑物、构筑物的主要构件,均采用非燃烧材料,其耐火极限符合现行的国家标准《建筑设计防火规范》(GB50016-2014)的有关规定。

厂区内消防车道宽为 8m, 路面净空高度大于 4.5m, 符合规范要求。

7.7.1.2 危险化学品贮运安全防范措施

贮存过程事故风险主要是因设备泄漏而造成的火灾爆炸、毒气释放和水质 污染等事故,是安全生产的重要方面。

- (1)装置区和储罐区均应设置围堰,围堰设置排水切换装置,确保正常的冲洗水、初期雨水和事故情况下的泄漏污染物、消防水可以纳入污水处理系统。另外,对于污水处理站电力系统设置独立应急系统,一旦发生重大泄漏火灾爆炸事故,可确保污水处理站的正常运行。
 - (2) 根据物料的易燃、易爆、易挥发性等性质进行储存。
- (3)各储罐设一个危险介质浓度报警探头,各车间、仓库应按消防要求配置消防灭火系统。包括泡沫消防设施和水泡消防设施,制定严格的作业制度。
- (4) 贮罐内物料的输入与输出应采用不同泵(无泄漏输送泵),贮罐上应 有液位显示,进各生产车间的中转罐上设有进料控制阀,由中转罐上的电子秤

计量开关进料阀并与泵联锁, 防止过量输料导致溢漏。

- (5) 危险化学品贮存的场所必须是经公安消防部门审查批准设置的专门危险化学品库房,露天堆放的必须符合防火防爆要求;爆炸物品、遇湿燃烧物品、剧毒物品和一级易燃物品不能露天堆放。
- (6) 贮存危险化学品的仓库管理人员,必须经过专业知识培训,熟悉贮存物品的特性、事故处理办法和防护知识,持证上岗,同时,必须配备有关的个人防护用品。
- (7) 贮存的危险化学品必须没有明显的标志,并按国家规定标准控制不同单位面积的最大贮存限量和垛炬。
- (8) 贮存危险化学品的库房、场所的消防设施、用电设施、防雷防静电设施等必须符合国家规定的安全要求。
- (9) 危险化学品出入库必须检查验收登记, 贮存期间定期养护, 控制好贮存场所的温度和湿度; 装卸、搬运时应轻装轻卸, 注意自我防护。
- (10)要严格遵守有关贮存的安全规定,具体包括《仓库防火安全管理规则》、《建筑设计防火规范》、《易燃易爆化学物品消防安全监督管理办法》等。
- (11)罐区严格按照《建筑物防雷设计规范》、《工业与民用电力装置的接地设计规范》设置防雷击、防静电系统。
- (12)参照《石油化工企业可燃气体和有毒气体检测报警设计规范》在罐 区设置自动报警设施。
 - (13) 可燃液体罐区均设有防火堤,防火堤的设计均执行国家及行业标准。
- (14)加强操作人员业务培训,岗位人员必须熟悉储罐布置、管线分布和阀门用途;定期检查管道密封性能,保持呼吸阀工作正常;罐内物品按规定控制温度;储罐清理和检修必须按操作规程执行,取样分析合格,确认无爆炸危险后进行操作。

罐区发生泄漏的应急措施:

- ①立即启动紧急应急方案。
- ②启动紧急停车程序。
- ③装置人员撤离到上风口。
- ④操作人员配备 PPE, 切断泄漏部位上游的所有阀门。

- ⑤开启水幕,吸收泄露的气体。
- ⑥将泄漏罐内的介质进行倒罐到备用罐。
- ⑦情况许可时,操作人员配备 PPE,对泄漏部位进行带压堵漏。
- ③采用负压抽吸装置,将泄漏出来的液体抽吸到密闭容器,视情况回用或 送到废物处理中心。
 - ⑨然后用水冲洗,冲洗水按废液外送废物处理中心处理。

7.7.1.3 工艺技术设计安全防范措施

- (1)车间物料输送管道不穿越无关的建筑物;工艺和公用工程管道共架多层敷设时依据管道介质危险性大小分层布置。
- (2) 进、出装置的物料管道,在装置的边界处设有隔断阀和 8 字盲板,并 在隔断阀处设有平台。
- (3)车间在可能超压的设备设有安全阀,安全阀定压低于设备的设计压力, 泵、安全阀的出口泄放管接入回收系统或放空管排出。
- (4)对于可能被物料堵塞或腐蚀的安全阀,车间在其入口前设爆破片,并 采取保温措施。
- (5)车间对于反应器等重要设备均设有报警信号和卸压排放设施,在非常情况下能够自动或手动遥控地紧急切断进料。
- (6)车间内所有危险性较大设备的承重钢框架、支架、裙座、管架和爆炸 危险区范围内的主管廊均涂有钢结构防火绝热涂料,耐火极限 1.5h。
 - (7) 车间内采用阻燃型电缆并架空敷设。
- (8)罐区的储罐配备消防喷淋装置,并且设置固定式泡沫站。甲苯储罐设置自动报警装置并设置自动水喷淋。
- (9) 拟建项目所有可燃、有毒物料始终密闭在各类设施和管道中,各个连接处采用可靠的密封措施。
- (10) 压力容器设计及制造符合《压力容器设计规范》及其它有关的工业 标准规范。
- (11)在厂区内或者厂界周围适当位置安装风向仪,以便随时观测准确风向。一旦发生毒害物泄漏事故,立即根据事故可能危害的范围设置警戒,所有人员朝泄漏处上风向疏散。

- (12)比空气重的易挥发易燃液体泄漏时,用工业覆盖层或吸附/吸收剂盖 住泄漏点附近的下水道等地方,防止气体进入。
- (13) 拟建项目涉及到酸性气输送管线应设置自动截断阀,一旦发生酸性气泄漏事故时,可以很快切断泄漏点两端的阀门,减少酸性气的泄漏量、降低事故的危害。

7.7.1.4 自动控制设计安全防范措施

- (1)本项目实施后,实现控制、管理、运营一体化,全厂生产装置、公用工程及辅助系统的自动控制及工厂信息管理具有国内先进水平。
- (2)本项目生产装置、公用工程及辅助设施的监视、控制和管理通过采用分散型控制系统(DCS)及其它系统完成,在中央控制室进行集中操作和管理。安全仪表系统(SIS)、可燃气体/有毒气体检测系统(FGDS)等分别独立于 DCS系统和其它系统单独设置。

项目自控设计具备以下功能:

- 1) 生产过程工艺参数的集中监视;
- 2) 工艺参数的自动控制:
- 3) 过程参数超限报警;
- 4) 重要环节的联锁保护:
- 5)中央调度室设有工厂管理网络连接接口,最终实现管、控、营销一体化。 集中监控可采用区域集中监控和全厂集中监控两种方式。

7.7.1.5 电气、电讯安全防范措施

- 1) 电气安全防范措施
- (1)装置的爆炸危险区域划分执行《爆炸和火灾危险环境电力装置设计规范》(GB50058-2014)。危险区内的各类电气设备均选用相应防爆等级的产品。电缆敷设及配电间的设计均考虑防火、防爆的要求。在装置爆炸危险区域内的所有电气设备均选用防爆型,设计防雷、防静电措施、配置相应防爆等级的电气设备和灯具,仪表选用拟建质安全型。
- (2) 生产装置中大部分负荷属于一、二类负荷,为了将突然停电引发事故的危险降至最低,对于一级用电负荷,选择与用电设备容量相匹配的 UPS 或 EPS 电源;二级用电负荷,供电系统采用不同母线段的双回路可靠电源供电;对正

常照明发生故障引起操作紊乱并可能造成重大损失的场所设置应急照明。

(3) 装置区按《建筑物防雷设计规范》(GB50057-94,2000版)和《工业与民用电力装置的接地设计规范》(试行 GBJ65-83)的规定,设防雷击、防静电接地系统。

2) 电讯安全措施

- (1) 电信网络包括行政管理电话系统和调度电话系统,火灾报警系统、工业电视监视系统、呼叫/对讲系统、无线通讯和接至厂内的市话等线路。电信线路采用以电话分线箱配线为主的放射配线方式,电缆采用沿电缆槽盒敷设方式为主。
- (2) 拟建项目设置一套工业电视监视系统,拟在装置区、罐区等处设置多个摄像点,装置控制室设置监视器。
- (3)各装置区、罐区分别安装一套呼叫/对讲子系统。在合适地方安装一套多路合并/分离设备,将各子系统联网,形成一套全厂性的呼叫/对讲系统。采用无主机分散放大呼叫/对讲系统,具有群呼、组呼、双工五通道通话等功能。紧急情况下可进行火灾或事故报警。

该项目安装一套火灾自动报警系统。由火灾报警控制器、火灾重复报警显示器、火灾探测器、手动报警按钮等组成。在装置区及重要通道口安装手动报警按钮,在车间、储罐区、变配电站、锅炉房等重要建筑内安装火灾探测器。 火灾报警控制器可以和消防设施实现联动。

拟建项目各装置设置无线对讲电话手机。无线对讲机拟使用 VHF 或 UHF 频段,可实现点对点及一点对多点的通信。

7716 消防及火灾报警系统

根据拟建工程的特点,在装置总区布置时,严格按《建筑设计防火规范》(GB50016-2014)将各功能区合理划分,设计中尽量采用露天布置,设计满足规范要求的消防通道;对各项建筑的结构类型、主要承重件的耐火性能、规格、耐火等级等均依《建筑设计防火规范》(GB50016-2014)进行设计,各单项建筑物均为钢筋混凝土承重的结构或砖混结构,屋面均为钢筋混凝土板;对楼梯、出入口、防火防爆设计均按照《建筑设计防火规范》(GB50016-2014)有关规定设置。电气设计中在易爆危险区域选用防爆电气,并对装置进行防雷、防静

电及接地设计,设置事故照明和双回路的消防电源及其备用的 UPS 电源;工艺设计采用先进的工艺生产路线并考虑设有安全应急措施,各主要装置设置安全减压阀、机械排风,装置进出口设水封、报警联锁等安全措施。

消防设施和措施如下:

1)设计水消防系统和消防管网,管网为环状。

根据《石油化工企业设计防火规范》(GB50160-2008)和《建筑设计防火规范》(GB50016-2014),拟建工程占地面积小于100ha,则全厂同一时间内的火灾处数按1处计算。

本工程水消防系统划分为: 低压消防及生产给水系统和稳高压消防给水系统两部分。低压消防及生产给水系统负责全厂生产、生活用水及低压消防用水供给, 稳高压消防给水系统负责工艺装置区和罐区, 以及辅助生产装置消防用水供给。

- 2)设计泡沫站,考虑设置压力式泡沫比例混合或平衡压力比例混合装置, 严格执行《低倍数泡沫灭火系统设计规范》(2000年版),保证化学品生产及储存的火灾抢险。
 - 3)消防冷却水系统

参照《石油化工企业设计防火规范》(GB50160-2008)的规定,在罐区内相关储罐上设置固定式消防冷却水系统。

4) 水喷雾冷却系统

参照《石油化工企业设计防火规范》(GB50160-2008)及《水喷雾灭火系统设计规范》(GB50219-95)的规定,本项目在罐区设置固定式水喷雾冷却系统。

5) 自动气体灭火系统

根据《建筑设计防火规范》(GB50016-2014)的规定, 拟在 UPS 室等处以及变配电室设置自动气体灭火系统。

6)移动式灭火设施

根据《建筑灭火器配置设计规范》(GB50140-2005)的规定,以及本工程各装置火灾危险等级的不同,在各危险地点配置不同种类和数量的手提式或推车式移动式灭火器,用以扑救小型初始火灾。

7) 在存在可燃气体的场所设置可燃气体探测器,在全厂设置区域报警器,

在火灾危险区域设置感温和感烟探测器,安装报警电话,在消防站设置火灾集中报警器。

在工程建设和生产过程中应保证消防设施的投入和落实并定期对消防设施 进行检查,积极贯彻"以防为主,防消结合"的方针,长期对职工进行安全和 消防教育,提高职工的火灾防范意识,加强生产安全管理,实现安全生产。

7.7.1.7 运输过程风险防范

运输风险

危险货物在运输过程中,从装卸、运输到保管、工序长,参与人员多;运输方式和工具多;运输范围广、行程长;气温、压力、干湿变化范围大,这些复杂众多的外界因素是运输中造成风险的诱发条件。

针对危险货物本身的危险特性,运输危险货物首先要进行危险货物包装, 以减少外界环境如雨雪、阳光、潮湿空气和杂质等的影响;减少运输过程中受 到的碰撞、震动、摩擦和挤压,以保持相对稳定状态;减少货物泄漏、挥发以 及性质相悖的货物直接接触造成事故。

危险货物运输的基本程序及其风险分析见表。危险货物在其运输过程中托运—仓储—装货—运货—卸货—仓储—收货过程中,装卸、运输和仓储三个环节中均存在造成事故、对环境造成风险的概率。

序号	过程	项目		风险分析
1 包装	爆炸品专用包装	火灾爆炸	反应速度快、释放热量和气体污染 物、财产损失	
		腐蚀性物品包装	环境危害	水体污染、土壤污染和生态污染
		物品危险品法规	/	重大风险事故
2	2 运输	运输包装法规	/	重大风险事故
		运输包装标准法规	/	重大风险事故
		爆炸品专用包装类	火灾爆炸	反应速度快、释放热量和气体污染 物、财产损失
3 装卸	气瓶包装类	火灾爆炸	反应速度快、释放热量和气体污染 物、财产损失	
		腐蚀性物品包装类	环境危害	水体污染、土壤污染和生态污染

表 7-9 运输过程风险分析

防范措施

危险货物运输中,由于经受多次搬运装卸,因温度、压力的变化;重装重卸,操作不当;容器多次回收利用,强度下降,桶盖垫圈失落没有拧紧,安全阀开启,阀门变形断裂等原因,均易造成气体扩散、液体滴漏、固体散落,出

现不同程度的渗漏,甚至可能引起火灾、爆炸或污染环境等事故。对这类事故的应急,按照应急就近的原则,运输操作人员首先采取相应的应急措施,进行渗漏处理,防止危险物质扩散至环境。

在运输途中,由于各种意外原因,产生汽车翻车、装船或沉船等,危险货物有可能散落、抛出至大气、水体或陆域,造成重大环境灾害,对于这类风险事故,要求采取应急措施,包括工程应急措施和社会救援应急预案。

包装过程要求包装材料与危险物相适应、包装封口与危险物相适应;包装标志执行《危险货物包装标志》(GB190-85)和《危险货物运输图示标志》(GB191-85)。

运输过程应执行《危险货物运输包装通用技术条件》(GB12465-90)和各种运输方式的《危险货物运输规则》。

装卸过程要求防震、防撞、防倾斜; 断火源、禁火种; 通风和降温。

对于管道运输,若规划不当,管道随意铺设,则有可能会由于交通事故等造成管道破裂而导致物料泄漏。

污染物末端处置过程风险防范

废气、废水等末端治理措施必须确保日常运行,如发现人为原因不开启废 气治理设施,责任人应受行政和经济处罚,并承担事故排放责任。若末端治理 措施因故不能运行,则生产必须停止。

为确保处理效率,在车间设备检修期间,末端处理系统也应同时进行检修,日常应有专人负责进行维护。

各装置区、生产工段应制定严格的废水排放制度,确保清污分流,污污分流。加强清下水的排放监测,避免有害物随清下水进入地表水体。

建立事故排放事先申报制度,未经批准不得排放,便于相关部门应急防范,防止出现超标排放。

7.7.1.8 火灾爆炸事故的应急对策

- (1) 万一发生火灾等危害性事故,应立即组织营救受害人员,组织撤离或者采取其他措施,保护危害区域的其他人员。
- (2) 迅速采取与火源相适宜的灭火方式,控制危险火源。该项目所涉及的主要化学品的灭火方式见下表。

- (3)针对火灾爆炸事故可能产生的危害,迅速采取措施,减少伴生/次生事故的影响。
 - (4) 对火灾爆炸事故造成的危害进行监测、处置。

7.7.1.9 环境风险三级防控体系

厂内采取三级防控体系,防控体系由:一级措施(设置防火堤);二级措施(事故水池);三级措施(设置厂界围挡)组成。

一级措施(设置防火堤)

工程为防止贮罐区发生泄漏时物料流出界区,进入外环境,罐区建防火堤。 该项目罐区设置防火堤(围堰)高度 1.0m。罐区的防火堤均能够容纳相应罐区 最大储罐事故完全泄漏的物料量,确保罐区发生泄漏时物料不会流出储罐区。

二级措施 (事故池)

(1) 事故池容积

厂区发生火灾或泄露事故后,消防用水及雨水中往往混有大量有毒有害液体,直接排放到水系中将造成严重污染,通过计算在公司内设置事故池,将消防用水及雨水通过事故池进行收集,进行二次处理,确定不会造成污染后再排放掉。

参照厂区的消防用水量应按同一时间内的火灾处数和相应处的一次灭火用 水量确定。

罐区消防用水量包括冷却用水量和灭火用水量两部分。

根据中石化建标〔2006〕43号文,事故池设施总有效容积为:

V 总=($V_1+V_2-V_3$)max+ V_4+V_5

注: $(V_1+V_2-V_3)$ max 是指对收集系统范围内不同罐组或者装置计算 $V_1+V_2-V_3$ 取其中最大值。

 V_1 -收集系统范围发生事故的一个罐或者一套装置的物料量;

 V_2 -发生事故的储罐或装置的消防水量, m^3 :

 $V_2 = \sum Q_{ii} t_{ii}$

 O_{38} -发生事故的储罐或装置的同时使用的消防设施的用水量, m^3/h :

t **-消防设置对应的设计消防历时, h;

 V_3 -发生事故时可以转输到其他储存或处理设施的物料量, m^3 :

 V_4 -发生事故时仍必须进入该收集系统的生产废水量, m^3 :

 V_5 -发生事故时可能进入该收集系统的降雨量。

1) V₁-收集系统范围发生事故的一个罐或者一套装置的物料量本项目新厂区罐区最大单罐容积为 100m³。

2) 消防水量

本项目新厂区最大消防用水量按储罐消防水量计算,根据《建筑设计防火规范》(GB5016-2014),当上述罐区采用消防水炮消防,消防水炮正常工作压力0.8-1.0MPa,设计消防水炮流量30L/s(依据表 3.3.2 建筑物室外消火栓设计流量)。根据《中国石油天然气集团公司企业标准——事故状态下水体污染的预防和控制技术要求》5.4.2.1 章节,中间事故缓冲设施容积设计消防历时按6~8h计算,本评价取8小时,消防水总量为864m³。

3) 发生事故时可以转输到其他储存或处理设施的物料量

本项目新厂区各座罐区均设置有防火堤,可以临时储存少量泄漏的物料,但由于该防火堤内储存有多种物料,为防止发生泄漏时产生次生危险,故防火堤中不设计储存物料,故 $V_3=0$ m³;

- 4)发生事故时仍必须进入该收集系统的生产废水量 按本项目和同期建设项目一天废水量计算 V_4 =107.4 m^3
- 5)发生事故时可能进入该收集系统的降雨量 根据水平衡计算,本项目新厂区初期雨水 V₅=336.12m³

V 总= $(V_1+V_2-V_3)$ max+ V_4+V_5 =(100+864-0)+107.4+336.12=1407.52m³

本项目新厂区拟设置一座 1785m³ 的事故及初期雨水池,能够接纳本项目新厂区的事故废水,满足需要。

厂区实行严格的雨污分流和分质排水制:整个厂区分为废水排水系统和雨水排水系统。

通常情况下,项目厂区所有雨水外排口截止阀处于关闭状态。当发生危险 品泄漏或火灾后,如有污染水或污染物流入雨水系统,再次确认该污染区域的 雨水外排口截止阀处于关闭状态,使污染水不流入厂界外的地表水体。

项目罐区必须按照《储罐区防火堤设计规范》(GB50351-2005)设置安全可靠的截油排水设备,以保证雨水及事故时的喷淋冷却水能顺利快捷的排出储罐组。罐组四周应设导液沟,使溢漏液体能顺利地流出罐组并自流入事故池内。

综上所述,该项目设计的事故废水收集系统设置基本合理,具有可靠性。

事故池的设置应符合《石油化工企业设计防火规范》(GB50160-2008)中的下列规定:

- 1.设有事故池的罐组应设导液管(沟),使溢漏液体能顺利地流出罐组并自流入存液池内;
 - 2.事故池距防火堤的距离不应小于 7m;
 - 3.事故池和导液沟距明火地点不应小于 30m;
 - 4.事故池应有排水设施。
 - (2) 事故池操作流程及设置要求

当事故发生时,立即切断清下水(雨水)排放口;事后余量消防废水经检测后,根据水质情况分质、分量进入厂区污水站处理,达标排放。若事故废水/废液浓度过高,本厂区污水处理站无法满足处置要求,应委托第三方污水处理厂或作为危险废物处置。

此外,根据《水体污染防控紧急措施设计导则》,对环境突发事故废水收集系统的设计和管理也必须满足以下要求:

- 1)企业需根据实际情况制订《污水阀的操作规程》,包括污水排放口和雨 (清)水排放口的应急阀门开合,以及发生事故启动应急排污泵回收污水至污水应 急池的程序等文件。以防止消防废水和事故废水进入外环境。
 - 2) 事故处置过程中未受污染的排水不宜进入储存设施。
 - 3)应急池可能收集挥发性有害物质时应采取必要的防治措施,减少逸散。
- 4)应急池非事故状态下不得占用,以保证事故期间事故废水有足够的容纳空间。
- 5)自流进水的应急池内最高液位不应高于该收集系统范围内的最低地面标高,并留有适当的保护高度。
- 6)当自流进入的应急池容积不能满足事故排水储存容量要求,须加压外排 到其他储存设施时,用电设备的电源应满足现行国家标准《供配电系统设计规 范》所规定的一级负荷供电要求。
- 7)应根据防火堤等区域正常运行时污水、废水及事故时受污染排水和不受污染排水的去向,正常运行排水切换设施。
 - 8) 事故池内部需进行防腐、防渗处理。

(3) 事故废水收集方式

该项目进行雨水分区,生产装置区和储罐区分设雨水系统,中间设置阀门隔离,使在发生火灾事故且下雨这一不利情况时,受污染雨水在可控范围内。

企业拟设置初期雨水收集池和消防废水池,布设初期雨水及消防水收集管 网,在发生泄漏或火灾爆炸事故时,生产装置区废水或消防水经收集地沟进入 消防废水池贮存;罐区废水经围堰围挡防止外流,排入消防废水池;如果废水外溢进入雨水管,则通过雨水池收集,排入消防废水池。同时,在雨水系统设置截断阀,保证事故废水收集系统管线畅通,事故废水进入地表水的可能性较小。可见,该项目消防废水收集能力满足要求,雨水系统设置截断阀,事故发生后对水环境的风险可控。

三级措施(设置厂界围挡)

拟建项目所在厂区各装置及罐区等均位于半封闭厂区内,即使在事故状态下事故废水外溢,由于厂界围挡的阻隔,废水不会流出厂外对外界水体造成不利影响。另外,要求厂区备有沙袋,以备应急时作为阻挡物封堵事故废水外流。

7.7.1.10 环境风险防范设施统计

本项目防范环境风险的设施见下表。

表 7-10 环境风险防范设施一览表

风险类型	防范设施	
泄漏	(1)在罐区设置围堰,高 0.8m,将泄漏出来的物料控制在围堰内;建设应急储罐,当发生泄漏时及转移破损储罐中泄露的物料。 (2)仓库、装置区四周设置环型截污沟,连接事故收集池,一旦发生泄漏,通过事故沟进行收集,防止外流。仓库出入口设缓坡式围堰,可以有效防止液体泄露时进入外部环境; (3)按照本评价提出的防渗要求落实一般防渗区、重点防渗区的防渗措施。 (4)储备应急封堵、吸附材料,应急时封闭所有事故外排点,防止泄露物料、废水漫流出厂。	
火灾爆炸	(1)仓库必须按照《常用化学危险品贮存通则(GB15603-1995)》进行化学品存储的管理以及贮存的安排; (2)仓库、罐区必须采取妥善的防雷、防静电措施; (3)在厂房、仓库、罐区等可能有可燃、有毒气体泄漏或聚集危险的关键地点装设监控报警; (4)在有可能发生火灾的的设施附近,设置感温感烟火灾报警器、视频监控系统; (5)在厂区雨水管网汇入市政雨水管网的节点上安装隔断措施,将消防水控制在厂区范围内,而后用泵抽入污水处理站处理后外排。	
事故废水	事故及初期雨水池,容积 1785m³。	

7.7.2 应急预案

7.7.2.1 总体要求

制定风险事故应急预案的目的是为了在发生风险事故时,能以最快的速度 发挥最大的效能,有序的实施救援,尽快控制事态的发展,降低事故造成的危害,减少事故造成的损失。

企业应根据环发(2010)113 号《关于印发<突发环境事件应急预案管理暂行办法>的通知》、环发(2015)4 号《关于印发<企业事业单位突发环境事件应急预案备案管理办法(试行)>的通知》、环境保护部令第 34 号《突发环境事件应急管理办法》等文件的相关要求编制环境应急预案,并结合实际情况,开展环境应急预案的培训、宣传和必要的应急演练,发生或者可能发生突发环境事件时及时启动环境应急预案,如需进行试生产,要在项目试生产前完成评估与备案;在环境应急预案通过环境应急预案评估并由本单位主要负责人签署实施之日起 20 日内报所在地县级环保行政主管部门备案,在完成备案后,须抄送湖北省环境保护厅。至少每三年对环境应急预案进行一次回顾性评估。

风险事故应急预案的基本要求包括:科学性、实用性和权威性。风险事故的应急救援预案必须进行科学分析和论证;应急预案应符合项目的客观情况,具有实用、简单、易掌握等特性,便于实施;对事故处置过程中职责、权限、任务、工作标准、奖励与处罚等做出明确规定,使之成为企业的一项制度,确保其权威性。

风险事故应急组织系统基本框图如下图所示。

由于拟建项目目前还未建成,在实施过程中可能会发生一定变化,因此严格的应急预案应当在项目建成试生产前编制完成,在项目投产运行过程中不断充实完善,且应急预案由于需要内容详细,便于操作。本次环评仅对应急预案提出要求,并对主要风险提纲挈领的提出应急措施和设施要求。

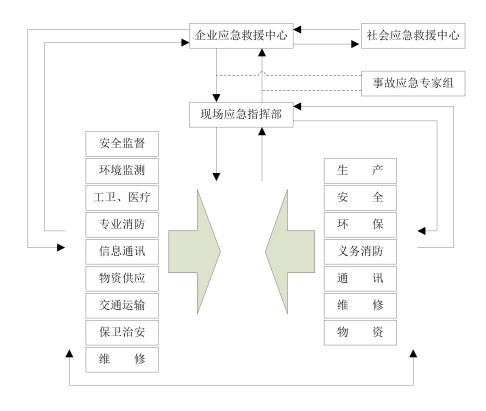


图 7-4 风险事故应急组织系统框图

7.7.2.2 救援专业队伍的组成及分工

工厂各职能部门和全体职工都负有化学事故应急救援的责任,各救援专业队伍,是化学事故应急救援的骨干力量,其任务主要是担负本厂各类化学事故的救援及处置。救援专业队伍的组成及分工见表 7-12。

机构名 称	负责人及其职责	组成
通信联络组	办公室主任担负各队之间的联络和对 外联系通信任务。	由办公室、安环部门、生产部门、调度 室组成。
444		
治安组	保卫部门。担负现场治安,交通指挥, 设立警戒,指导群众疏散。	由保卫部门负责组成,可向当地政府、 派出所要求增援。
侦检抢 救组	生产部门及安环部门领导共同组成。 担负查明毒物性质,提出补救措施,抢 救伤员,指导群众疏散。	由生产部门、安环部门、办公室等组成, 可向当地消防队要求增援。
应急消 防组	担负灭火、洗消和抢救伤员任务。	生产部门、安环部门、园区及荆州市消 防队。
抢险抢	设备部门领导。	由设备部门、生产部门组成,包括工艺
修组	担负抢险抢修指挥协调。	员、设备保养员和机修工。
医疗救 护组	医务室卫生员。担负抢救受伤、中毒人 员。	办公室卫生员,乡镇卫生机构。
物资保 障组	仓库管理部门领导。 担负伤员抢救和相应物资供应任务。	仓库管理、办公室等人员。

表 7-11 救援专业队伍的组成及分工一览表

7.7.2.3 主要事故风险源及防范重点

根据项目特点,主要事故风险源及防范重点如表 7-13 所示。

表 7-12 主要事故风险源及防范重点

部位	关键部 位	主要风 险内容	应急措施	应急设施
车间	包装 桶、储 槽	泄漏或 由此导 致的燃 烧爆炸	按程序报告,将包装桶、储槽内物料引至 其他储槽或贮桶,止漏并检修,对泄漏的 物料进行回收和清理,污水排入污水站。 根据事故大小,启动全厂应急救援方案。	备用储槽或贮桶, 个人防护工具、止 漏和检修工具。消 防设施。
罐区	储罐	泄漏或 由此导 致的燃 烧爆炸	按程序报告,堵漏并检修,必要时将贮罐 内物料引至应急槽、罐内,对泄漏的物料 进行回收和清理,污水排入污水站。根据 事故大小,启动全厂应急救援方案。	备用储槽或罐,个 人防护工具、止漏 和检修工具。消防 设施
废气处理	废气治 理装置	废气事 故排放	按程序报告,必要时停止加工过程,积极 检修,根据事故大小,启动全厂应急救援 方案。	科学设计,加强检修、维护,建议设置备用的废气治理系统

7.7.2.4 应急救援指挥部的组成、职责和分工

7.7.2.4.1 指挥机构

公司成立化学事故应急救援"指挥领导小组",由总经理、有关副总经理及生产部、安环部、公司办公室(办公室及总务)、设备部、质检部等部门领导组成,下设应急救援办公室(设在安环部),日常工作由安环部兼管。发生重大事故时,以指挥领导小组为基础,即化学事故应急救援指挥部,总经理任总指挥,有关副总经理任副总指挥,负责全厂应急救援工作的组织和指挥,并负责与外部联系。指挥部设在生产调度室。

若总经理和副总经理不在工厂时,由生产总监和安环部经理为临时总指挥 和副总指挥,全权负责应急救援工作。

7.7.2.4.2 职责

指挥机构及成员的职责如表 7-14 所示。

表 7-13 指挥机构及成员的职责一览表

机构/成 员名称	职责
指挥领 导小组	①负责本单位"预案"的制定、修订; ②组建应急救援专业队伍,并组织实施和演练; ③检查督促做好重大事故的预防措施和应急救援的各项准备工作。
指挥部	①发生事故时,由指挥部发布和解除应急救援命令、信号; ②组织指挥救援队伍实施救援行动; ③向上级汇报和向友邻单位通报事故情况,必要时向有关单位发出救援请求;

	④组织事故调查,总结应急救援工作经验教训。
指挥部人	员分工
总指挥	组织指挥全厂的应急救援工作。
副总指挥	协助总指挥负责应急救援的具体指挥工作。
安全环 保部门 领导	协助总指挥做好事故报警、情况通报及事故处置工作。
生产部门领导	①负责事故处置时生产系统开、停车调度工作;②事故现场通讯联络和对外联系; ③负责事故现场及有害物质扩散区域内的洗消工作;④必要时代表指挥部对外发 布有关信息。
办公室 主任	①负责抢险救援物资的供应和运输工作;②负责抢救受伤、中毒人员的生活必需品供应;③负责现场医疗救护指挥及中毒、受伤人员分类抢救和护送转院工作; ④负责灭火、警戒、治安保卫、疏散、道路管制工作。
设备部 门领导	协助总指挥负责工程抢险、抢修的现场指挥。
质检部 门领导	负责事故现场及有害物质扩散区域监测工作。

7.7.2.4.3 报警信号系统

报警信号系统建设是应急救援预案的重要内容。项目报警信号系统应分为三级,具体如下:

- 一级报警:发生对厂界外有重大影响的事故,如库区/车间爆炸等,除厂内 启动紧急程序外,应立即向邻近厂、开发区区管委会、消防队以及荆州市安全 生产监督部门报告,申请救援并要求周围企业单位启动应急计划。
- 二级报警:企业各关键岗位、厂周界附近设检测仪器,一旦危险物品超过警戒浓度,或者厂内发生一般性火灾或爆炸事故,则立即发出警报。如发生该类报警,车间/装置人员紧急启动应急程序,其他人员紧急撤离到指定安全区域待命,并同时向邻近厂及园区管委会报告,要求和指导周边企业启动应急程序。
- 三级警报: 只影响车间/装置本身,如果发生该类报警,车间/装置人员应紧急行动启动车间/装置应急程序,所有非车间/装置人员应立即离开事故车间/装置区,并在指定紧急集合点汇合,听候事故指挥部调遣指挥。

报警系统采用警报器、广播和无线、有线电话等方式。

7.7.2.4.4 风险事故的处置

- 一、化学品泄漏事故应急处置
- 1、总体要求

应急救援内容包括污染源控制、人员疏散与救助、污染物处置等内容,具体如下:

- (1)事故发生后,车间/装置人员要紧急进行污染源控制工作,严格按照紧急停车程序进行断水、断电、断料、冷冻保温等操作。同时需立即向指挥领导小组报告,听候调遣处置。
- (2)指挥领导小组接到报警后,应迅速通知有关部门、车间,要求查明事故发生部位和原因,下达应急救援处置指令,同时发出警报,通知指挥部成员及消防队和各专业救援队伍迅速赶往事故现场。
- (3)指挥部成员通知所在部室按专业对口迅速向主管上级公安、劳动、环保、卫生等领导机关报告事故情况。
- (4)指挥部成员到达事故现场后,根据事故状态及危害程度作出相应的应 急决定,并命令各应急救援队立即开展救援,如事故扩大时,应请求厂外支援。
- (5) 发生事故的车间,由指挥部派遣人员佩戴防护设备进入装置泄漏部位进行紧急处置:
- ①若原料储存容器泄漏,则查明泄漏部位,用应急工具(如橡皮片、胶带、木头塞等)堵塞,以防止泄漏继续扩大。短时间无法修复则需将残余物料排至备用装置内。
- ②若真空系统泄漏,则应立即停止真空系统及其服务对象的生产操作,反应釜进行冷却保温,真空泵排气、断电,查明泄漏部位,用应急工具(如橡皮片、胶带、木头塞等)堵塞,短时间无法修复则需将泵内剩余废水排至应急收容装置内。
- ③若物料输送管线或阀门泄漏,则应立即停止上游放料,必要时对上游容器进行冷却保温;查明泄漏部位,将管道内剩余物料排至应急收容装置内,及时更换相关设施。
- (6)事故发生时至少派一人往下风向开展紧急监测,佩戴随身无线通讯工具、便携式检测仪,随时向指挥部报告下风向污染物浓度和距离情况,必要时根据指挥部决定通知企业下风向 500m 范围内的人群撤离或指导采取简易有效的保护措施。
- (7)火灾和爆炸等低概率、高危害事故发生后影响较大,应向消防队、公安等部门申请应急救援,并开展紧急疏散和人员急救。应急救援策略厂内采用防护、逃生及应急处置三重考虑,而区域居民和邻近企业以尽快撤离逃生为主。
 - (8) 厂内或开发区区设立风向标,根据事故泄漏情况和风向,设置警戒区

- 域,由派遣增援的公安人员协助维持次序,担负治安和交通指挥,组织纠察,在事故现场周围设岗,划分禁区并加强警戒和巡逻检查。扩散危及到厂内外人员安全时,应迅速组织有关人员协助友邻单位、厂区外过往行人在区、市指挥部指挥协调下,向上侧风方向的安全地带疏散。
- (9) 现场(或重大事故厂内外区域)如有中毒人员,则医疗救护队与消防队配合,应立即救护伤员和中毒人员,对中毒人员应根据中毒症状及时采取相应的急救措施,对伤员进行清洗包扎或输氧急救,重伤员及时送往医院抢救。发生腐蚀性伤害则先用大量水冲洗然后送医院。
- (10) 当事故得到控制后指挥部需派员对事故现场及周边受影响地区进行 洗消;同时迅速要成立调查组,分析事故原因,并研究制定后期处置方案。

二、火灾爆炸事故应急措施

从事化学品生产、使用、储存、运输的人员和消防救护人员时应熟悉和掌握化学品的主要危险特性及其相应的灭火措施,并定期进行防火演习,加强紧急事态时的应变能力。一旦发生火灾,每个职工都应清楚地知道他们的作用和职责,掌握有关消防设施、人员的疏散程序和危险化学品灭火的特殊要求等内容。

(1) 灭火注意事项

扑救化学品火灾时,应注意以下事项:

- a.灭火人员不应单独灭火;
- b.出口应始终保持清洁和畅通;
- c.要选择正确的灭火剂;
- d.灭火时还应考虑人员的安全。
- (2) 灭火对策
- a. 扑救初期火灾:
- ①迅速关闭火灾部位的上下游阀门,切断进入火灾事故地点的一切物料;
- ②在火灾尚未扩大到不可控制之前,应使用移动式灭火器、或现场其它各种消防设备、器材扑灭初期火灾和控制火源。
 - 三、车间反应事故应急措施
- (1) 车间发生反应事故(温度、压力超限,或反应釜泄漏等),则立即停止 进料及设备运行,根据反应釜内操作工序特点进行冷却保温,防止物料爆沸;

同时立即向指挥领导小组报告,由指挥部通知有关部门、车间,查明事故发生原因,下达应急救援处置指令,通知指挥部成员和各专业救援队伍迅速赶往事故现场。

- (2) 救援人员到场后,佩戴防护设备进入事故区,查明事故原因,根据事故特点修复相关设施;
- ①若反应超温,则立即修复冷却系统,待釜内温度降至安全范围后,采取 必要的安全性操作,降低釜内物料的危险性后,转移至应急收容装置,做危废 处置:
- ②若超压,则立即修复压力控制系统,泄压后,对釜内物料进行测试,根据结果选择继续生产或降低釜内物料危险性后转容;
- ③若反应釜泄漏,则立即进行堵漏,同时保证釜内物料温度,防止爆沸; 若短期内无法修复,则采取安全措施降低釜内物料危险性后转容。

应急处置过程中,需保证废气收集、治理系统正常运行,以防废气事故性 排放。

(3) 若事故扩大时,应请求厂外支援。

其他后期监测、疏散、医疗、洗消、后期处置等工作参照化学品泄漏事故处置措施操作。

四、事故性排放污染控制应急措施

- (1) 若废气治理措施失效,发生废气事故性排放,则立即停止设备运行, 检查废气治理设备、设施,开启备用设施,待查明原因并修缮后,方可继续运 行。若事故发生时,产污设施无法停止运行,则应立即向指挥领导小组报告, 听候调遣处置。
- (2)发生废水事故排放时,应立即关闭排放口紧急切断阀,将废水导入事故应急池,必要时停止生产,减少污水站负荷,查明原因并修缮后,将废水处理达到标准后方可排放。

其他内容参照化学品事故和反应事故应急措施。

7.7.2.5 有关规定和要求

(1)按照本节内容要求落实应急救援组织,每年初要根据人员变化进行组织调整,确保救援组织的落实。

- (2) 按照任务分工做好物资器材准备,如:必要的指挥通讯、报警、洗消、消防、抢修等器材及交通工具。上述各种器材应指定专人保管,并定期检查保养,使其处于良好状态,各重点目标设救援器材柜,专人保管以备急用。
- (3) 定期组织救援训练和学习,各队按专业分工每年训练两次,提高指挥 水平和救援能力。
 - (4) 对全厂职工进行经常性的化救常识教育。
 - (5) 建立完善各项制度。
- (6) 突发环境事件应急预案应明确与当地人民政府及环保行政主管部门、 外部其他企事业单位间信息通报、处置措施衔接、应急资源共享等应急联动机 制。
- (7) 突发环境事件应急预案在编制时应注意与开发区突发环境事件应急预案保持联动。

7.7.3 联动机制

突发环境事件应急预案在编制时应注意与荆州市沙市化工园区突发环境事件应急预案保持联动。按照"企业自救、属地为主"的原则,一旦发生环境污染事件,企业应立即实行自救,采取一切措施控制事态发展,及时向管委会报告;超出本企业应急处置能力时,应启动上一级预案,由地方政府动用社会应急救援力量,实行分级管理、分级响应和联动,充分发挥地方政府职能作用和各部门的专业优势,加强各部门的协同和合作,提高快速反应能力。使环境风险应急预案适应本项目各种环境事件的应急需要。

7.8 环境风险简单分析汇总

项目环境风险简单分析汇总情况见下表。

建设项目名称 益曼特健康产业(荆州)有限公司综合升级改造项目 (湖北省荆州市 (湖北) (荆州) (沙市)区 沙市经济开发区 建设地点 ()县 省 市 群力大道36号) 地理坐标 经度 112.348734715°E 纬度 30.352514584°N 主要危险物质及分 储罐区、生产车间 环境影响途径及危 储罐区正硅酸乙酯泄漏并发生火灾爆炸事故造成次生污染。事故期间 害后果(大气、地表 废水及物料泄漏造成地表水和地下水污染。

表 7-14 项目环境风险简单分析内容表

水、地下水等)				
风险防范措施要求	严格遵守规章制度,	完善应急预案,	加强监测管理等	

填报说明(列出项目相关信息及评价说明):

拟建项目建成后,其Q值小于1(Q<1),则环境风险潜势直接判定为I:根据《建设项 目环境风险评价技术导则》(HJ169-2018)中评价工作等级划分原则,项目环境风险评价 只做简单分析。

7.9 风险评价结论

本项目风险潜势为I,环境风险评价等级为简单分析,主要环境风险来自泄 漏物料并发生火灾爆炸事故造成次生污染,事故期间废水及物料泄漏造成地下 水污染,尽管事故概率较小,但要从设计、建设、生产、储运等各方面采取多 级防护才能确保安全生产,将上述风险发生的可能性降至最低。本项目应编制 环境风险应急预案并在当地环境保护主管部门备案,定期开展风险应急培训和 演练。在发生环境风险事故后,按照预案采取有效的污染防控和应急措施,尽 量避免发生人员伤亡,最大程度的减缓事故造成不良环境影响。

本项目环境风险评价自查内容详见表 7-16。

工作内容 完成情况 名称 存在 危险物质 总量

表 7-15 环境风险评价自查表

风 物质危险性		有	- 毒有害☑	易燃易爆☑		
险识	环境风险类 型	泄露☑		火灾、爆炸引发伴生/次生污染物排放☑		
别	影响途径	大气図	地表水図	地下水☑		
事	故情形分析	源强设 定方法	计算法□	经验估算法□	其他估算法□	
	1. ~	预测模 型	SLAB□	AFTOX□	其他口	
风险预测	ıj	预测结 果				
与评价	地表水	最近环境的	敢感目标 <u>/</u> ,到达E	时间 <u>/</u> h		
<i>ν</i> ι	地下水	下游厂区的	边界到达时间 / (1		
			敢感目标 / ,到过			
重点	风险防范措 施	学品安全名 2. 应认各 3 车区按水各 5. 配加阀 6. 加阀 6. 加阀 6. 加阀 6. 加阀 6. 加阀 6. 加阀 6. 加阀 6. 加阀 6. 加阀	管理条例》要求管 生产工艺特性当, 中防范措施均处置导排沟,事 相关规范设置围 等配量的消防型围 境风险管理和的设施 境部位的日常检修 饭案每三年修订一	理; 严格执行"安全生产正常状态时,方可开、状态进入收集池后及,对围堰及周边区域上厂出水设有控制闸阀等应急物资和防护装法,后,加强对装货户保养,编制环境	备; 置及各类易泄漏设施管 风险应急预案并定期演	
	"□"为勾选项	泄漏物料 率较小,作 保安全生产 险应急预 演练。在 施,尽量	军发,事故期间废 但要从设计、建设 立,将上述风险发 案并在当地环境保 发生环境风险事故	水及物料泄漏造成地、生产、储运等各方 生的可能性降至最低 护主管部门备案,定 后,按照预案采取有	所,主要环境风险来自 下水污染,尽管事故概 面采取多级防护才能确 。本项目应编制环境风 期开展风险应急培训和 效的污染防控和应急措 故造成不良环境影响。	

8 环境保护措施及其可行性论证

8.1 营运期环境保护措施

8.1.1 大气环境保护措施及其可行性分析

8.1.1.1 工艺尾气处理工艺

项目在水解、基材喷涂、超临界干燥、母液精馏的过程中会产生工艺废气,主要污染物为乙醇(以 VOCs 进行评价)和氯化氢。本项目采用一级中冷+二级深冷,回收低沸物,其乙醇回收效率约为 95%,不凝尾气抽至喷淋塔吸收处理,喷淋处理效率 85%,尾气喷淋吸收处理后,大部分尾气被带入废水,少量尾气在经 20m 的排气筒 3#排放。

其处理工艺流程如下:

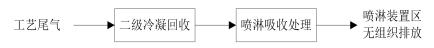


图 8-1 工艺尾气处理工艺流程图

经处理后排放的 VOCs 其排放浓度、排放速率均满足《工业企业挥发性有机物排放控制标准》(DB12/524-2020)表 1 石油炼制与石油化学的排放限值要求;排放的 HCl 其排放浓度、排放速率均满足《大气污染物综合排放标准》(GB16297-1996)表 2 排限值的要求。

8.1.1.2 废气处理工艺可行性分析

二级深度冷凝

冷凝过程中,被冷凝物质仅发生物理变化而化学性质不变,故可直接回收利用。冷凝法在理论上可以达到很高的净化程度,但净化程度越高则操作费用越高。因此,它常常作为净化高浓度有机废气的预处理工序,从降低污染物含量和减少废气体积两方面减少后续工艺的负荷,并回收有价值物质。该法适用于有机废气浓度高、温度低、风量小的工况,需要附属冷冻设备,主要应用于石油、化工、制药等行业有机废气处理。

物质在不同的温度和压力下,具有不同的饱和蒸气压。当物质的蒸气压在

某一温度下达到其相应的饱和蒸气压时,则开始凝结,该温度称为物质的露点温度。只有系统温度低于露点温度,蒸气态物质才能从气相中冷凝出来。冷凝法就是利用挥发性有机物在不同温度和压力下具有不同饱和蒸气压这一性质,采用降低系统温度或提高系统压力的方式,使其从气态转变为液态而从气相中分离出来。

项目采用二级冷凝回收装置(一级水冷、二级-25℃冷冻盐水冷却),主要针对项目乙醇尾气进行冷凝回收,多级连续冷却方法在石油化工行业的油气回收中应用很广泛,其净化程度可满足世界各国排放标准的要求。

喷淋洗涤

废气洗涤塔又分为穿孔板式废气洗涤塔、旋流板废气洗涤塔及填料式废气洗涤塔,废气吸收塔一般采用最常见的 PP 板、玻璃钢及不锈钢等耐腐蚀耐氧化优质材质等制成。

废气洗涤塔的结构:内设逆向填料吸收系统、喷淋系统、脱雾装置系统、 下设供水箱、供水泵系统、进出风口、风机、风管、吸罩组成系统。

废气洗涤塔工作原理: 废气洗涤塔属两相逆向流填料废气吸收塔。废气气体从塔体下方进气口沿切向进入废气吸收塔,在通风机的动力作用下,迅速充满进气段空间,然后均匀地通过均流段上升到第一级填料吸收段。在填料的表面上,气相中酸性物质与液相中碱性物质发生化学反应。反应生成物油(多数为可溶性盐类)随吸收液流入下部贮液槽。未完全吸收的废气气体继续上升进入第一级喷淋段。在喷淋段中吸收液从均布的喷嘴高速喷出,形成无数细小雾滴与气体充分混合、接触、继续发生化学反应。然后酸性气体上升到第二级填料段、喷淋段进行与第一级类似的吸收过程。第二级与第一级喷嘴密度不同,喷液压力不同,吸收酸性气体浓度范围也有所不同。在喷淋段及填料段两相接触的过程也是材热与传质的过程。通过控制废气洗涤塔流速与滞贮时间保证这一过程的充分与稳定。对于某些化学活泼性较差的酸性气体,尚需在吸收液中加入一定量的表面活性剂。塔体的最上部是除雾段,气体中所夹带的吸收液雾滴在这里被清除下来,经过处理后的洁净空气从废气吸收塔上端排气管放入大气。

根据武汉谱尼科技有限公司于 2020 年 12 月出具的《荆州市江汉精细化工有限公司年产 6 万吨/年三氯氢硅及 5.2 万吨/年绿色硅烷项目竣工环境保护验收监测报告》内容,公司厂界无组织排放废气中氯化氢、甲醇浓度均满足《大气污染物综合排放标准》(GB16297-1996)表 2 无组织排放监控浓度限值要求。

由此说明公司现有工艺尾气处理工艺能满足污染物达标排放要求,本项目的所产生的工艺尾气新建同样处理工艺喷淋吸收塔,各类废气均通过 20m 的排气筒有组织排放,其废气处理工艺是可行的。

8.1.1.3 排气筒合理性分析

(1) 排气筒排放高度原则

在满足达标排放条件下,排放的污染物在评价区域内的预测值(贡献值+现状值)要满足环境质量标准。同时,根据 GB16297-2012《大气污染物综合排放标准》的要求,排气筒高度应高于周围 200m 半径范围内最高建筑 5m,不能达到该要求的排气筒,应按照其高度对应的表列排放速率标准值严格 50%执行。根据 DB12/524-2020《工业企业挥发性有机物排放控制标准》的要求,排气筒高度不低于 15m(因安全考虑或有特殊工艺要求的除外)。

(2) 排气筒高度合理性分析

本项目工艺尾气经处理后由 20m 高排气筒 3#排放,各种污染物排放浓度、排气筒高度对应排放速率从严 50%后也能满足 GB16297- 2012《大气污染物综合排放标准》表 2 排放浓度要求和 DB12/ 524-2020《工业企业挥发性有机物排放控制标准》的要求。因此本项目满足排气筒排放高度要求。

8.1.1.4 废气处理工艺规范政策符合性分析

根据《重点行业挥发性有机物综合治理方案》中要求"推进建设适宜高效的治污设施。企业新建治污设施或对现有治污设施实施改造,应依据排放废气的浓度、组分、风量,温度、湿度、压力,以及生产工况等,合理选择治理技术。鼓励企业采用多种技术的组合工艺,提高 VOCs 治理效率。低浓度、大风量废气,宜采用沸石转轮吸附、活性炭吸附、减风增浓等浓缩技术,提高 VOCs 浓度后净化处理;高浓度废气,优先进行溶剂回收,难以回收的,宜采用高温

焚烧、催化燃烧等技术。油气(溶剂)回收宜采用冷凝+吸附、吸附+吸收、膜分离+吸附等技术。低温等离子、光催化、光氧化技术主要适用于恶臭异味等治理;生物法主要适用于低浓度 VOCs 废气治理和恶臭异味治理。非水溶性的 VOCs 废气禁止采用水或水溶液喷淋吸收处理。采用一次性活性炭吸附技术的,应定期更换活性炭,废旧活性炭应再生或处理处置。有条件的工业园区和产业集群等,推广集中喷涂、溶剂集中回收、活性炭集中再生等,加强资源共享,提高 VOCs 治理效率。"本项目工艺废气乙醇需回收处理,采用冷凝+吸附的技术,并且乙醇均为水溶性的 VOCs 废气可采用水喷淋吸收处理,因此本项工艺废气处理符合《重点行业挥发性有机物综合治理方案》的要求。

根据《石化行业挥发性有机物综合整治方案》中要求"工艺废气应优先考虑生产系统内回收利用,难以回收利用的,应采用催化燃烧、热力焚烧等方式处理,处理效率应满足相关标准和要求。同时,应采取措施尽可能回收排入火炬系统的废气;火炬应按照相关要求设置规范的点火系统,确保通过火炬排放的 VOCs 点燃,并尽可能充分燃烧。"本项目工艺废气乙醇均采用了二级冷凝来回收利用,因此本项目工艺废气处理符合《石化行业挥发性有机物综合整治方案》的要求。

根据《"十三五"挥发性有机物污染防治工作方案》中要求"参照石化行业 VOCs治理任务要求,全面推进化工企业设备动静密封点、储存、装卸、废水系统、有组织工艺废气和非正常工况等源项整治。现代煤化工行业全面实施LDAR,制药、农药、炼焦、涂料、油墨、胶粘剂、染料等行业逐步推广LDAR工作。加强无组织废气排放控制,含 VOCs物料的储存、输送、投料、卸料,涉及 VOCs物料的生产及含 VOCs产品分装等过程应密闭操作。反应尾气、蒸馏装置不凝尾气等工艺排气,工艺容器的置换气、吹扫气、抽真空排气等应进行收集治理。"本项目在物料的储存、输送、投料、卸料,涉及 VOCs物料的生产及含 VOCs产品分装等过程中采用密闭操作,蒸馏装置不凝尾气等工艺排气、抽真空排气均进行收集治理,本项目在装置设备密闭性及尾气收集方面符合《"十三五"挥发性有机物污染防治工作方案》的要求。

根据《湖北省挥发性有机物污染防治三年行动实施方案》中要求"重点控制污染物:加强活性强的 VOCs 排放控制,主要为芳香烃、烯烃、炔烃、醛类等。各地应紧密围绕本地环境空气质量改善需求,基于 O₃ 和 PM_{2.5} 来源解析研究成果,确定 VOCs 控制重点。对于控制 O₃ 而言,重点控制污染物主要为间/对-二甲苯、乙烯、丙烯、甲醛、甲苯、乙醛、1,3-丁二烯、1,2,4-三甲基苯、邻二甲苯、苯乙烯等;对于控制 PM2.5 而言,重点控制污染物主要为甲苯、正十二烷、间/对-二甲苯、苯乙烯、正十一烷、正癸烷、乙苯、邻-二甲苯、1,3-丁二烯、甲基环己烷、正壬烷等。同时,要强化苯乙烯、甲硫醇、甲硫醚等恶臭类VOCs 的排放控制。"本项目所排放的 VOCs 主要为乙醇,不属于重点控制污染物,且针对 VOCs 进行了有效的回收及处理,因此本项目工艺废气处理符合《湖北省挥发性有机物污染防治三年行动实施方案》的要求。

8.1.1.5 无组织废气处理措施

根据《排污许可证申请与核发技术规范 石化工业》(HJ 853-2017),无组织排放的运行管理要求按照 GB16297、《挥发性有机物无组织排放控制标准》中的要求执行。

为控制无组织废气的排放量,必须以清洁生产的指导思想,对物料的运输、 存贮、投料、生产、出料、产品的存贮等全过程进行分析,调查废气无组织排 放的各个主要环节,并针对各主要排放环节提出相应改进措施,以减少废气无 组织排放量,企业现阶段应采取的无组织排放控制措施如下:

- (1) 无组织排放节点主要包括原辅材料储存、管网阀门、敞口容器、物料分离、废水处理等。对无组织排放设施应实现废气源密闭化;不能密闭化的,应采取集气措施,收集的废气经处理后排放,将其变为有组织排放。建筑物内废气无组织排放源(加料口、卸料口、离心分离、真空泵排气、反应釜(罐)排气、储罐呼吸气等)应采用全空间或局部空间有组织强制通风收集系统。收集系统在设计时,对高浓度 VOCs 区域应考虑防爆和安全要求。
- (2) 工艺过程控制要求:对生产过程动静密封点(阀门、法兰、泵、罐口、接口等)采用泄漏检测与修复(LDAR)技术控制无组织排放。对含 VOCs 物料

的输送、储存、投加、转移、卸放、反应、搅拌混合、分离精制、真空、包装等可能产生 VOCs 无组织排放的环节均应密闭并设置收集排气系统,送至 VOCs 回收或净化系统进行处理。

- (3)设备起停、检修与清洗:载有含 VOCs 物料的设备、管道在开停工(车)、 检修、清洗时,应在退料阶段尽量将残存物料退净,用密闭容器盛接,并回收 利用;采用水冲洗清洁,高浓度的清洗水优先排到溶剂回收系统;采用蒸汽、 惰性气体清洗,应将气体送至 VOCs 回收或净化系统进行处理;吹扫、气体置 换时,应将气体送至 VOCs 回收或净化系统进行处理。
- (4)下列有机废气应接入有机废气回收或处理装置:①固体废物贮存、转运废气;②液体储罐、母液罐呼吸气;③用于含挥发性有机物容器真空保持的真空泵排气;④非正常工况下,生产设备通过安全阀排出的含挥发性有机物的废气;⑤生产装置、设备开停工过程不满足 GB 16297 和 GB14554 要求的废气;⑥用于输送、储存、处理含挥发性有机物、恶臭物质的生产设施,以及水、大气、固体废物污染控制设施在检维修时清扫气应接入有机废气回收或处理装置,其大气污染物排放应符合 GB16297 和 GB14554 中相应标准限值的规定。
- (5)加强管道、阀门的密闭检修,此外还应加强对操作工的培训和管理, 以减少人为操作失误所造成的对环境的污染。
- (6)对于一些可能导致废气事故排放的情况,如循环冷却系统失效而导致溶剂大量排放、溶剂储罐泄漏等,厂家必须加强管理,采取切实有效措施以保障安全和防止污染环境。

采取以上措施后,可有效减少无组织排放废气对环境的影响。

8.1.1.6 废气污染防治措施强化建议

- (1)废气治理措施应先于产生废气的生产工艺设备开启,后于生产工艺设备停机,并实现连锁控制。
- (2)企业需将治理设施纳入生产管理中,并配备专业管理人员和技术人员。 企业应建立治理工程运行状况、设备维护等记录制度。
 - (3) 建议企业购置便携式气体监测仪和气体监测仪,加强对厂区废气排放

及废气治理设施运行情况的监控。

8.1.2 地表水环境保护措施及其可行性分析

8.1.2.1 废水处理方案选择

湖北江瀚新材料股份有限公司现有厂区废水系统采用"生产废水→格栅→调节均衡池→中和池→蒸汽加热池→UASB 厌氧反应器→初沉池→预曝池→生物接触氧化→二沉池→达标排放"的处理工艺,处理规模设计 3750m³/d。

其处理工艺流程图见下图。

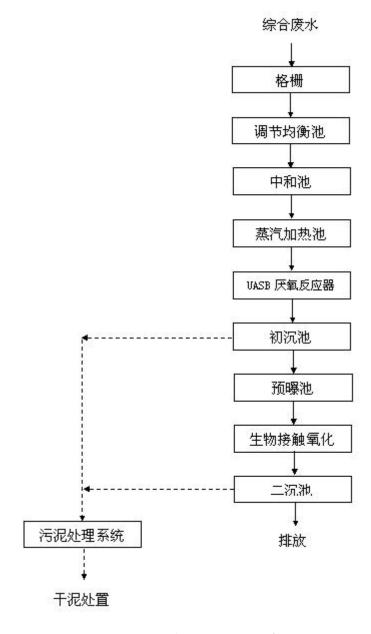


图 8-2 污水处理站工艺流程图

根据验收监测报告内容,公司现有工程废水监测结果统计列入下表。

表 8-1 废水监测结果统计表 单位: mg/L, pH 无量纲

监测	监测	监测项目			监测结果			标准限值	达标评价
日期	点位	血例项目	1	2	3	4	均值或范围	7571年7871旦	
		рН	3.13	3.14	3.50	3.43	3.13-3.50		
	厂区	COD	1130	1270	1550	1740	1423		
	污水	BOD_5	464	520	650	730	591		
	处理	NH ₃ -N	76.6	93.2	90.1	120	95.0		
	站进	SS	18	22	16	15	18		
2020 /5		石油类	0.72	0.98	1.03	1.72	1.11		
2020年		动植物油	1.48	1.52	1.54	0.66	1.30		
05月20日		pН	7.16	7.08	7.06	7.00	7.00-7.16	6-9	达标
	厂区	COD	130	142	151	251	169	500	达标
	污水	BOD_5	46.0	51.0	54.4	90.0	60.4	300	达标
	处理	NH ₃ -N	0.465	0.257	0.215	2.45	0.847		
	站出	SS	8	6	7	7	7	400	达标
		石油类	ND	ND	ND	ND	ND	20	达标
		动植物油	ND	ND	ND	ND	ND	100	达标
		pН	3.11	3.16	3.45	3.46	3.11-3.46		
	广区	COD	1190	1460	1360	1420	1358		
	污水	BOD ₅	500	613	570	596	570		
2020年	处理	NH ₃ -N	58.7	108	116	51.3	83.5		
05月21	站进	SS	11	15	12	11	12		
日	口	石油类	0.64	0.58	1.24	1.35	0.95		
		动植物油	2.44	2.00	1.32	1.65	1.85		
	厂区	рН	7.00	7.20	7.31	6.81	6.81-7.31	6-9	达标
	汚水	COD	259	84	126	117	147	500	达标

处理	BOD ₅	90.0	28.6	45.4	41.0	51.3	300	达标
站出	NH ₃ -N	0.145	0.518	0.409	0.615	0.421		
口	SS	9	9	8	9	9	400	达标
	石油类	ND	ND	ND	ND	ND	20	达标
	动植物油	ND	ND	ND	ND	ND	100	达标

由上表可见,公司现有废水经污水处理厂处理后,总排放口所监测因子 COD、BOD₅、氨氮、SS、pH 均达到 GB8978-1996《污水综合排放标准》表 4 三级最高允许排放浓度限值和荆州申联环境科技有限公司污水处理厂接管水质要求。

本项目所产生的废水将通过废水管道抽至公司现有厂区,依托公司现有厂区的污水处理站进行处理,污水处理站处理能力为 3750m³/d。根据待建项目《湖北江瀚新材料股份有限公司功能性硅烷偶联剂及中间体建设项目环境影响报告书》,公司现有厂区需处理的废水量为 671.1m³/d,公司现有厂区污水处理站仍有 3078.9m³/d 的处理余量,本项目和同期建设项目将新增废水 107.4m³/d,公司现有厂区污水处理站完全有能力进行处理。

本项目废水主要为工艺废水、循环冷却水排污水、盐酸吸收区产生的处理 废水、喷淋装置区产生的尾气处理废水、车间地面清洗废水、生活废水及初期 雨水,与公司现有工程废水来源、特性均相同,不新增新的废水特征因子,因 此公司现有工程污水处理站的处理工艺可有效处理本项目废水。

本项目及同期建设项目建成后,全公司废水排放总量约为 233550m³/a (778.5m³/d),公司新厂区的废水处理均利用原有设备,其处理能力能满足要求。综上所述,公司现有工程污水处理站处理本项目废水是可行的。

8.1.2.2 事故水池及消防水池的设置

(1) 事故水池的设置

为防止废水事故情况下直接排放对纳污水体的水环境造成影响,需要设置相应的废水事故收集池。事故池位置应靠近污水处理站进行设置,以便在污水处理站发生事故时能及时将未处理的废水导入事故池内暂存。根据第7章风险分析章节,新厂区修建事故及初期雨水池能够满足本项目和同期建设项目要求。

(2) 消防水池设置

为了避免消防事故水对环境造成污染, 杜绝消防事故水引起的污染, 建议公司设置相应的消防废水收集系统。根据生产装置和生产车间的布置、功能设

置相应的事故消防水池。根据厂区平面布置,建议设置如下消防水池和事故围堰。

在第七章中已经分析了消防水用量,根据计算设计消防水池。

通过设置相应的污水事故收集池和消防事故水池,能够有效的对各个生产 单元和生产车间的废水进行分类的收集和处理,有效的避免了废水风险事故排 放对污水处理厂造成的影响。

8.1.2.3 废水收集措施

- 1. 严格执行清污分流、雨污分流,采用便于区分的沟渠或管道系统,分质转移输送。
- 2. 为了减少废水的跑冒滴漏,建议项目废水转移尽量采用明沟套明沟,并 对沟渠、管道进行防渗、防腐处理;同时做好收集系统的维护工作,以避免渠 道受腐蚀而泄露,防止废水渗入地下水和清下水系统。渠上应盖石板,管道连 接处设置开孔向上的三通,便于环保部门的采样和监督。
- 3. 突发环境污染影响事故发生时,事故废水接入事故应急池,事故结束后 对事故废水进行检测,根据其水质情况,分质、分量进入项目拟建污水处理装 置处理达标后排放。
- 8.1.2.4 项目废水进荆州申联环境科技有限公司污水处理厂可行性分析
 - (1) 荆州申联环境科技有限公司污水处理厂情况

荆州申联环境科技有限公司污水处理厂(前身为荆州中环水业有限公司)位于湖北省荆州开发区内纺印三路 16 号。

2008年6月,荆州中环水业有限公司进行了印染废水集中治理和循环利用项目(一期项目),主要处理印染工业园区内印染废水,建设规模为3万吨/d。

2012年7月,荆州中环水业有限公司进行了印染工业园八万吨/日污水集中 处理项目(二期项目),主要新增5万吨/工业废水处理规模。

2018年2月,荆州中环水业有限公司进行了荆州开发区3万吨生活污水处理设施改造工程建设项目,将污水处理厂一期工程升级改造成单一处理3万吨/d生活污水的处理系统。

2019年11月,宿迁银控自来水有限公司与荆州中环水业有限公司签订了《荆州中环水业有限公司整体资产重组协议》。重组后,宿迁银控自来水有限公司在荆州经济开发区成立两个独立子公司即荆州申联水务有限公司、荆州申联环境科技有限公司分别经营生活污水处理业务及工业污水处理业务,污水处理厂一期工程(生活污水)建设单位已荆州市中环水业有限公司变更为荆州申联水务有限公司,污水处理厂二期工程(工业污水)建设单位由荆州市中环水业有限公司变更为荆州申联环境科技有限公司。

荆州申联环境科技有限公司污水处理能力前期报建规模为 5.0 万 m³/d,其处理设施实际处理能力仅为 3.0 万 m³/d,公司为了给经济开发区提供更加完善的污水处理保障设施,更好的支撑经济开发区的长期发展,于 2020 年 6 月开展了荆州经济开发区工业污水处理厂二期提标升级改造工程,主要建设内容为:新建 1 条处理规模为 2.2 万 m³/d 的工业污水处理线,将工业污水处理能力 3.0 万 m³/d 提标升级并扩容至 5.2 万 m³/d,同时对现有 3 万 m³/d 污水处理系统部分建、构筑物、道路及设施设备进行升级改造,增设厂区除臭系统、安防监控等附属设施。

(2) 水质符合性分析

本工程废水经处理后,废水污染物浓度可达到《污水综合排放标准》 (GB8978-1996)表 4 三级标准并同时满足荆州申联环境科技有限公司污水处理 厂接管水质要求。

本工程废水经现有项目污水处理站处理后,废水水质符合荆州申联环境科技有限公司污水处理厂的接管标准,不会对荆州申联环境科技有限公司污水处理厂进水水质造成冲击。因此,荆州申联环境科技有限公司污水处理厂污水处理工艺及规模能够满足本工程污水处理的要求。

(3) 管网衔接性分析

目前,公司所在区域已敷设有污水管网,该区域废水可顺利排入污水管网进入荆州申联环境科技有限公司污水处理厂深度处理,本工程废水可顺利进入市政污水管网。

(4) 污水对荆州申联环境科技有限公司污水处理厂冲击性分析

荆州申联环境科技有限公司污水处理厂提标升级改造后处理能力为 5.2 万 m³/d。根据实地调查,荆州申联环境科技有限公司污水处理厂,日平均污水处理量为 2.0 万 m³/d,高峰进水量为 2.2~2.8 万 m³/d。按最高峰进水量情况考虑,还剩余 2.4 万 t/d 工业污水处理能力。本工程排水量约 96.38m³/d,剩余 2.4 万 t/d 工业污水处理能力,完全可以接纳本工程废水。

终上所述,本工程废水进荆州申联环境科技有限公司污水处理厂处理是可 行的。

8.1.3 声环境保护措施及其可行性分析

项目噪声主要来源于主要来源于生产设备。噪声源强 75~105dB(0A), 经隔声、消声、减震等降噪措施后, 噪声源强降低至 75dB(A)。

8.1.3.1 噪声控制原则

噪声控制措施应该根据拟建项目噪声污染特征和实际情况,按各车间、各 噪声源分别对待,其控制原则如下:

- (1) 机械振动为主的噪声源,以减振、隔声为主;
- (2) 车间内噪声源采取隔声和工作环境隔离防护的双重措施;
- (3) 间歇声源可考虑并联共用消声器的办法,减少消声器的个数;
- (4) 对高压气流形成的噪声,以减压节流或阻尼消声作为主要手段。

8.1.3.2 噪声污染防治措施评价

对于本项目噪声污染,主要考虑如下降噪措施:

- (1)对车间内设备应合理布局,高噪声设备尽量远离区域内环境敏感点布置。
- (2) 对生产车间墙体进行防噪设计,包括:对车间墙体(包括墙顶)加设隔 声仓,车间墙体采用空心隔声墙。
- (3)车间门窗采用双层隔声窗户和通风消声百页窗、隔声门复合配制,车间内应根据噪声源分布情况,设置吸声吊顶。
- (4) 将高噪声的水泵、浆泵、真空泵等,集中布置在水泵隔声间内,并在 泵座基础减震,安装弹性衬垫和保护套;泵进出口管路加装避震喉。

- (5) 对高噪声设备电机加隔声罩。
- (6)对厂区内进出的货车加强管理,厂区内、出入口及途经居民区附近禁止鸣笛,限制车速。此外,企业货物流通作业时间及物料堆料、取料时间应限于 6:00~20:00 时段内,严禁夜间作业。
 - (7) 加强对设备的日常维护与保养,保持良好的润滑状态,减少异常噪声。
- (8)加强厂区绿化,对厂界设置 5m 以上距离种植防噪抑尘效果好的高大 乔木,加强员工劳动安全卫生防护。

声屏衰减主要考虑以上降噪措施,采取上述噪声治理措施后,预计厂界噪声排放能够达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中的 3 类标准要求。

8.1.4 固体废物处置措施及其可行性分析

8.1.4.1 固体废物处置措施概述

本项目产生的固体废物主要有废矿物油、污水处理污泥和生活垃圾。其中 废矿物油为危险废物,按要求暂存后委托有相应资质的公司处置。职工的生活 垃圾由环卫部门统一清运处理。污水处理污泥作为制砖建材或者进入生活垃圾 填埋场进行填埋处理。

本项目固体废物均得到妥善处置,处置率为 100%,本工程采取的各项固体 废物处置措施技术经济可行。

8.1.4.2 固体废物管理措施

- (1)固体废物分类收集。各生产车间设置固定的普通废物存放点,分不可 回收废物和可回收废物存放点。产生的危险废物设置收集容器,并按照危险废 物的类型分别以不同的标识,以利于危险废物的分类收集。
- (2)公司应当按有关规定分类贮存、转移、处置固体废物,建立固体废物 档案并按年度向荆州市生态环境局申报登记。申报登记内容发生重大改变的, 应当在发生改变之日起十日内向原登记机关申报。固体废物档案应包括废物种 类、产生量、流向、贮存、处置等资料。
 - (3)一般固体废物暂存场所按《一般工业固体废物贮存、处置场污染控制

- 标准》(GB18599-2020)建设,危险废物暂存场所按《危险废物贮存污染控制标准》(GB 18597-2001)建设。
- (4)固体废物处置实行资源化、减量化、无害化原则。生活垃圾委托环卫部门处理;危险废物委托有资质的危险废物处置单位处理。
- (5) 提高操作人员的环保意识,确保危险固废不在各车间存在混收现象。 8.1.4.3 危险废物处理处置原则

根据《中华人民共和国固体废物污染环境防治法》规定,建设单位对危险废物处置应做到以下几点:

- (1)对危险废物的容器和包装物以及收集、贮存、运输、处置危险废物的设施、场所,必须设置危险废物识别标志;厂内危险废物临时堆存应采取相应污染控制措施防止对环境产生影响:
- (2)项目单位必须按照国家有关规定制定危险废物管理计划,并向环境保护局申报危险废物的种类、产生量、流向、贮存、处置等有关资料:
 - (3)项目单位必须按照国家有关规定处置危险废物,不得擅自倾倒、堆放:
- (4)禁止项目单位将危险废物提供或者委托给无经营许可证的单位从事收集、贮存、利用、处置的经营活动;
- (5) 收集、贮存危险废物、必须按照危险废物特性分类进行。禁止混合收集、贮存、运输、处置性质不相容而未经安全性处置的危险废物:
- (6)转移危险废物的,必须按照国家有关规定填写危险废物转移联单,并向危险废物移出地设区的市级以上地方人民政府环境保护行政主管部门提出申请。运输危险废物,必须采取防止污染环境的措施,并遵守国家有关危险货物运输管理的规定;
- (7) 收集、贮存、运输、处置危险废物的场所,设施,设备和容器,包装物及其他物品转作他用时,必须经过消除污染的处理,方可使用;运输转移残渣人员必须经过严格培训和考核,以及许可证制度。
- (8)项目单位应当制定意外事故的防范措施和应急预案,并向所在地县级以上地方人民政府环境保护行政主管部门备案,环境保护行政主管部门应当进

行检查。

8.1.4.4 危险废物临时堆放场所的控制要求

(1) 收集措施

- ①为防止废弃物逸散、流失,采取有害废物分类集中堆放、专人负责等措施,可有效防止废物的二次污染。对危险废物的收集和管理,拟采用以下措施:
- ②危险废物应贴上专用标签,临时堆放在危险废物库房中,累计一定数量 后由专用运输车辆外运至危险处置单位。
 - ③危险废物全部暂存于危险废物暂存间内,做到防风、防雨、防晒。

上述危险废物的收集和管理,公司将委外专人负责,危废临时贮存场所按照 GB18597-2001 相关要求进行防渗、防漏处理,安全可靠,不会受到风雨侵蚀,可有效防止临时存放过程中二次污染。

(2) 设置危险废物暂存间

公司现有厂区已设置了一座 50m² 危险废物暂存间,并按照《危险废物贮存 污染控制标准》(GB18597-2001)相关要求采取了如下安全防护措施:

地面与裙脚用坚固、防渗的材料建造,建筑材料与危险废物相容。基础必须防渗,防渗层为至少 1m 厚粘土层(渗透系数≤10⁻⁷cm/s),或 2mm 厚高密度聚乙烯,或至少 2mm 厚的其它人工材料,渗透系数<10⁻¹⁰cm/s。

不相容的危险废物分开存放,并设有隔离间隔断。

危废贮存设施周围设置有围墙。配备通讯设备、照明设施、安全防护服装 及工具,并设有应急防护设施。

危险废物贮存设施都按 GB15562.2 的规定设置警示标志。

公司现有工程危险废物暂存间可收纳危险废物约为 10 吨,本项目和同期建设项目建成后整个公司产生的危险废物产生的危险废物约为 30t/a,按 1 个月转运周期计算,危险废物暂存间完成有能力收纳全公司的危险废物。

8.1.4.5 危险废物运输

为确保危险废物在交通转移、运输过程中的安全,本项目应采取如下措施:

(1) 危险废物应据其成分,用符合国家标准的专门装置分类收集;在危险

废物的收集运输过程中必须做好废物的密封包装,严禁将具有反应性的不相容的废物、或者性质不明的废物进行混合,防止在运输过程中的反应、渗漏、溢出、抛洒或挥发等情况。

- (2) 在危险废物的包装容器上清楚地标明内盛物的类别与危害说明,以及数量和包装日期。
- (3) 承载危险废物的车辆必须有明显的标志或适当的危险符号,以引起关注。在运输过程中需持有运输许可证,其上注明废物来源、性质和运往地点。
- (4)运输危险废物的车辆必须定期进行检修,及时发现安全隐患,确保运输的安全。负责运输的司机必须通过培训,了解相关的安全知识。
- (5) 事先需做出周密的运输计划和行驶路线,其中应包括废物泄漏情况下的有效应急措施。
- (6)车上应配备通讯设备、处理处置中心联络人员名单及其电话号码,以 备发生事故时及时抢救和处理。
- (7) 危险废物从产生单位到利用处置单位的转移过程,严格执行《危险废物转移联单管理办法》,危险废物产生单位在转移危险废物前,须按照国家有关规定报批危险废物转移计划;经批准后,产生单位应当向移出地环境保护行政主管部门申请领取联单。产生单位应当在危险废物转移前三日内报告移出地环境保护行政主管部门,并同时将预期到达时间报告接受地环境保护行政主管部门。通过在运输全过程实施危险废物转移联单制度,明确各方责任,严格操作规程,拟建工程危险废物转移运输污染可得到有效防控。

8.1.4.6 危险废物最终处置可行性

危险废物由具备危险废物处理资质公司处置,因此危险废物处置是合理的。

8.1.5 地下水环境保护措施及其可行性分析

根据工程分析结果,该项目可能对地下水产生污染影响的污染源主要为储罐区、生产车间、废水管道等。该项目的地下水污染预防措施按照源头控制、分区控制、事故响应、预防监控的原则,提出针对性的污染防治措施。

8.1.5.1 源头控制措施

①储罐区、生产车间、废水管道

该项目须对储罐区、生产车间、废水管道采取相应防渗措施,防止和减少物料的跑冒滴漏。

②危险废物暂存场

建设单位设有专门的危险固体废物暂存场,暂存场采取防渗、防雨、防淋溶、防流失等措施。

建立检查维护制度,定期检查维护防渗、防雨、防淋溶、防流失设施,发现有损坏可能或异常,应及时采取必要措施,避免地下水污染。

建立档案制度,应将厂内的各类固体废物的数量和种类详细记录在案,长期保存,供随时查阅。

8.1.5.2 分区防渗

将全厂按物料或者污染物泄漏的途径和生产功能单元所处的位置划分为重点污染区防治区、一般污染区防治区两类地下水污染防治区域:

重点污染防治区是可能会对地下水造成污染,风险程度较高,需要重点防治的区域,主要包括储罐区、生产车间、废水管道。一般污染防治区主要为: 道路、辅助设施。地下水污染防治分区详见下表。

序 号	防渗分区	装置(单元、 设施)名称	防渗区域	防渗方案	防渗技术要求
1	丢上叶	储罐区	整个罐区 地面及围 堰	采用灰土垫层,并设置防渗 层;罐区四周设置经防渗处 理的围堰	等效粘土防渗 层 Mb≥6.0m,渗
2	重点防 渗区	生产车间	地面、裙脚	地面与裙脚采用坚固、防渗 的材料建造	透系数 · K<1.0×10 ⁻⁷ cm/s
3		废水管道 装置区及 水池		用防水材料进行各池体内表 面处理	K≤1.0×10 ′cm/s
4	一般防渗区	道路、辅助设施	地面、裙脚	地面与裙脚采用坚固、防渗 的材料建造	等效粘土防渗 层 Mb≥1.5m, 渗 透系数 K≤1.0×10 ⁻⁷ cm/s

表 8-2 地下水污染防治分区表

对重点污染区防治区防渗措施参照《危险废物填埋污染控制标准》

(GBI8598-2019) 执行:

- (1) 储罐区: 地面采用灰土垫层,并设置防渗层。罐区四周设置经防渗处理的围堰,在发生液体原料泄漏时及时处理,防止污染地下水。
- (2) 生产车间: 地面与裙脚采用坚固、防渗的材料建造, 地面基础采取防渗。
- (3)废水管道:废水输送全部采用管道,视废水水质的不同选择合适材质,对管材表面作防腐、防锈蚀处理;预埋管件、止水带填缝板要安装牢固,位置准确。

在采取上述措施后重点防渗区其防渗层性能与 6m 厚粘土层(渗透系数不大于 1.0×10⁻⁷cm/s)等效。

对一般污染防治区防渗措施参照《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2020)执行:对一般污染防治区地面用在抗渗混凝土面层中掺水泥基渗透结晶型防水剂,其下铺砌砂石基层,原土夯实达到防渗目的。通过上述措施使一般污染区各单元防渗层性能与 1.5m 厚粘土层(渗透系数不大于 1.0×10⁻⁷cm/s)等效。

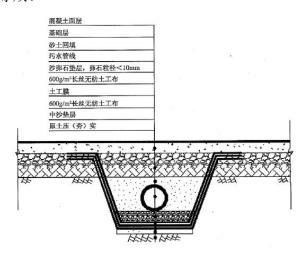


图 8-3 污水管线沟槽典型防渗结构示意图

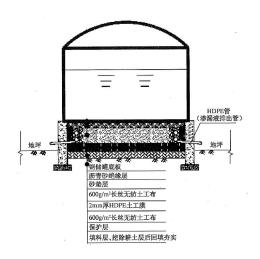


图 8-4 储罐典型防渗结构示意图

8.1.5.3 地下水风险事故应急响应预案

项目地下水污染源是主要来自生产装置、储罐区、污水处理站。针对不同地下水风险事故状态下采取相应的防范与应急措施。

- (1)除按要求进行分区防渗结构建设外,应定期对各区防渗结构进行检查, 发现防渗结构出现问题,应及时修复,使其满足相应区域防渗要求。
- (2) 定期监测厂区内地下水水质,及时发现可能发生的地下水污染事故。 根据监测结果,找出污染源并进行封闭、截流,防止继续扩散。
- (3)当发现污染源泄漏,应立即进行堵漏、切断污染源头阀门等有效措施,阻止污染物进一步泄漏,已泄漏于地面物料应及时进行收集、吸附等地面清理措施。
- (4)对已经发生的地下水、土壤污染事故,应及时向环保管理部门汇报, 并采取相应的治理与修复措施。

8.1.5.4 地下水监控

(1) 地下水动态监测

项目建设后对地下水环境必须进行动态长期监测,具体监测点位、监测频次等见章节10。

(2) 地下水监控及应急管理

①防止地下水污染管理的职责属于环境保护管理部门的职责之一。厂环境 保护管理部门指派专人负责防治地下水污染管理工作。定期对厂区的生产装置 进行"跑冒滴漏"检查,及时采取补救措施。

- ②本厂环境保护管理部门应按照《地下水环境监测技术规范》(HJ/T164)要求,制定监测计划,并委托具有监测资质的单位负责地下水监测工作,建立地下水监测数据信息管理系统按要求及时分析整理原始资料、监测报告的编写工作。
- ③在日常例行监测中,一旦发现地下水水质监测数据异常,应尽快核查数据,确保数据准确。并将核查过的监测数据通告厂安全环保管理部门,由专人负责对数据进行分析、核实,并密切关注生产设施的运行情况。
- ④对超标点开展跟踪监测,若发现对地下水造成持续污染的,应及时向当地环境管理部门报告,组织开展场地污染调查,并积极开展污染治理。

8.1.6 土壤污染防治措施

本项目潜在的土壤污染影响来源于废水或有害液体物料的漫流和下渗,废气排放污染物沉降造成影响。本项目已按照《石油化工工程防渗技术规范》(GB/T 50934-2013)和《危险废物贮存污染控制标准》(GB18597-2001)及 2013 修改单要求采取了重点防渗和一般防渗措施,建设了初期雨水池、事故水池及事故废水收集系统,可以有效防止有害物质通过漫流和下渗的方式污染评价区的土壤。项目正常工况下排放的废气污染物通过大气沉降对土壤环境质量影响轻微,通过加强对大气污染防治措施的日常维保,确保各污染物达标排放,可减轻项目建设对土壤的污染,建设单位在切实落实上述污染防治措施的前提下,可有效防止土壤污染。本评价提出如下环境管理措施进一步控制土壤污染:

- (1) 加强本项目液体物料、废水管网的日常检查和维护, 杜绝"跑冒滴漏"。
- (2)做好重点防渗区和一般防渗区的的巡检和保养工作,发现防渗层及时 更换,避免废水、废液下渗。
- (3) 重视废气处理设备的检修工作,杜绝废气超标排放,有效控制大气沉 降造成的污染。
- (4) 落实土壤监测计划,对厂内存在土壤污染隐患的区域及厂外大气污染 沉降影响较大的环境敏感点(污染物最大落地浓度区域)定期开展监测,并将

监测结果上报生态环境主管部门备案。

8.1.7 生态环境保护措施及其可行性分析

项目新增建构筑物,主要利用公司预留用地,目前用地现状为空地,该项目的建设将对生态会造成一定程度的影响。开发建设项目的生态环境保护措施须从生态环境特点及其保护要求考虑,主要采取保护途径有以下内容:

8.1.7.1 生态影响的避免措施

本工程需注意的是施工过程中尽可能减少水土流失,施工过程中注意文明 施工,施工产生的土方妥善堆存,防止水土流失,减少占压土地。建筑物基础 开挖施工,在安排施工计划前,注意施工开挖尽量避免在雨季,减少水土流失, 同时避免春季开挖,减少扬尘影响。

8.1.7.2 生态影响的消减措施

为消减施工活动对周围环境的影响,要标桩划界,标明施工活动区,禁止施工人员进入非施工占用地区域,严令禁止到非施工区活动。

8.1.7.3 水土保持措施

水土保持措施的建立应依据发布的有关加强水土保持的法律、法规及相关 标准和技术规范进行。应考虑安全可行,尽量减少占地。具体建议如下:

- ①对开挖裸露面等要及时恢复, 开挖面上进行绿化处理。
- ②临时堆放场要设置围墙,做好防护工作,以减少水土流失。
- ③雨季施工时,应备有工程工布覆盖,防止汛期造成水土大量流失,平时 尽量保持表面平整,减少雨水冲刷。
 - ④保持排水系统畅通。
- ⑤加强生态绿化,在"适地适树"的原则上,既要提高绿化的档次,又要考虑总造价的平衡,力求低投入,高效果,乔、灌、草、地被有机结合,丰富绿化层次和景观内容。绿化上选择能代表区域特色的植物,形式布置上充分考虑层次感。项目建设完成后要对水土保持工程及绿化设施进行经常性的维护保养。

上述措施的确定需要建设方提供详细的施工方案和运行方式,才能更具有针对性,才能将生态影响消减到合理程度。

8.1.7.4 生态影响的恢复措施

生态恢复是相对于生态破坏而言的,生态破坏可以理解为生态体系的结构 发生变化、功能退化或丧失。生态恢复是指恢复系统的合理结构、高效的功能 和协调关系。该项目生态恢复的内容有:对区域内裸露地表进行绿化或硬化处 理,消除地表裸露。

8.2 施工期环境保护措施

8.2.1 大气环境保护措施

为降低项目施工对项目所在区域环境空气的不良影响,评价要求施工单位 应采取相应措施并加强施工管理:

- 1、在施工区界设置高度不低于 2m 的围档,最大限度控制施工扬尘影响的范围:
- 2、规范施工操作,减小施工期焊接烟尘和油漆废气的产生量,在满足技术 要求的前提下尽量采用环保油漆。

8.2.2 地表水环境保护措施

施工生活污水一同纳入现有的污水管网,经处理达标后排放。建设单位应 同施工单位签定环保责任书,严禁施工期废水的随意、直接排放。

8.2.3 声环境保护措施

为了尽量减小施工对所在区域声环境的影响,环评建议施工单位应采取以下措施并严格实施:

- 1、合理安排施工时间,使用高噪声设备的施工作业应安排在白天进行,并 尽可能避免大量高噪声设备同时使用;
- 2、合理布置施工现场,应尽量避免在施工现场的同一地点安排大量的高噪 声设备,造成局部声级过高:
 - 3、对动力机械设备定期进行维修和养护,避免因松动部件振动或消声器损

坏而加大设备工作时的声级;

- 4、模板、支架拆卸过程中,遵守作业规定,减少碰撞噪音;尽量少用哨子、喇叭、笛等指挥作业,减少人为噪声;
 - 5、运输车辆在进入施工现场附近区域后,要减速慢行,并严禁鸣笛。

8.2.4 固体废物处置措施

严格建筑垃圾的管理,施工中尽量综合利用:散落的砂浆、混凝土,尽量 回收利用;凝固的砂浆、混凝土可以回收利用;碎砖块可以作为粗骨料拌制混 凝土,也可以作为地基处理、地坪垫层等的材料。

装修阶段产生的塑料包装桶、金属包装桶等由厂家回收,废包装纸袋等可由废品公司收购,严禁随意乱扔;施工现场禁止将生活垃圾乱丢乱放,任意倾倒,也不能混在建筑垃圾中用于其它工地的填土。在施工现场,要设置垃圾桶,集中收集生活垃圾,由当地环卫部门每日清运。

8.2.5 施工期环境管理措施

为了加强施工期的环境管理力度,项目单位应同工程中标的承包商签订《建设工程施工期的保护环境协议》,并在施工过程中督促施工单位设专人负责,以确保各项控制措施的落实,协议内容要求承包商遵守国家和地方制定的环境法律、法规,主要内容有:

(1) 工程"三同时" 检查

项目建设期间,应根据国家和地方环境保护部门的相关规定和要求,检查 工程是否符合"三同时"原则,污染防治措施,特别是主要的防污染设备是否 按计划与主体工程同时设计、同时施工,质量是否符合要求。

- (2) 严格督察,控制施工环境影响
- ①建筑垃圾、施工弃土堆放、装卸、运输是否按对策措施要求落实;
- ②运输中应有防止尘土飞扬、泥浆泄漏、污水外流、渣土散落及车辆沾带泥土等措施:
- ③施工过程中是否有效控制各类机械设备产生的噪声污染,是否严格执行了不得在 22: 00~06: 00 从事打桩等高噪声作业的规定;

④建筑工地生活污水和生活垃圾是否按规定进行了分类、暂存和最终处置。

8.3 环境保护投入估算

本项目工程建设投入总计为 25000 万元, 其中环保设施投入约为 160 万元, 占工程建设投资 0.64%。

8.4 项目竣工环境保护"三同时"验收清单

项目竣工环境保护"三同时"验收清单列入下表。

表 8-3 项目竣工环境保护"三同时"验收清单

244	пл	排污工艺装置及		污染防治措施		投资
类	别	过程	治理方法或措施	工程规模	治理效果	(万元)
	废气	工艺尾气	工艺尾气冷凝装置+喷淋吸收+20m 排气 筒	2 套	满足 GB16297-1996《大气污染物综合排放标准》和 DB12/524-2020《工业企业挥发性有机物排放控制标准》中相关要求	60
污染治	废水	工艺废水、循环 冷却水排污水、 喷淋装置区产生 的尾气处理废 水、车间地面清 洗废水、生活废 水	依托公司现有污水处理站进行处理,其处 理工艺为生产废水→格栅→调节均衡池 →中和池→蒸汽加热池→UASB 厌氧反 应器→初沉池→预曝池→生物接触氧化 →二沉池→达标排放	3750m³/d	满足 GB8978-1996《污水综合 排放标准》表 4 三级标准要求 和园区管网接管要求	依托现有 工程
理	地下水	储罐区、盐酸吸 收区、生产车间、 废水管道	构筑物基础进行防渗处理,避免不均匀沉 降破坏渗漏危害发生	水处理构筑物防渗处理措施 1 项	杜绝水处理构筑物渗漏情况 发生	纳入工程 款
	噪声	设备噪声源	优化设备选型,减振、隔声、消声	降噪措施 3 项	厂界达到《工业企业厂界噪声 排放标准》(GB12348-2008)中 3 类标准	30
	固体废	设备维修废油	按照 GBl8597-2001《危险废物储存污染 控制标准》进行暂存后,交由有资质单位 进行处置	/	排放量为 0	依托现有 工程
	物	污水处理污泥	作为制砖建材或者进入生活垃圾填埋场	/	排放量为0	

			进行填埋处理				
		生活垃圾	委托环卫部门统一清运	/		排放量为0	
	事	事故废水及初期 雨水	事故及初期雨水池	容积 1785m³	避免事	故废水排放, 收集初期雨 水	加)
	故防	储罐区	储罐区围堰	/	避免储	B罐区泄露发生次生事故	纳入工程 款
	范	火灾风险事故	消防器材、风险报警装置、应急响应机制	1 项		时应急响应,减小风险事 环境危害范围和程度	<i>₹</i> 5/\
	落	实环境保护距离	加强日常监管	配合园区管	含委会统-	一管理	0
		小 计					90
	厂区总排口监测系统		①雨水排水口设置标志排,并永久设取样 口	①排污口监测井 1 座;②排汽 范化 1 项	5口规		20
			④废气采样口及规范化建设,设置采样平 台和监测平台	废气采样口及规范化建设	排污口规范化建设 [1项		30
	环均	竟监测计划监测记 录	企业制定环境监测计划,定期做好监测记录	设立环境保护管理专员	ţ		-
7.7*		环境管理档案	企	· 业建立环境管理档案	l		5
环境		排污许可证	向环境主	管部门申请办理排污许可证			-
管理		竟保护设施运行许 可证和运行记录	向环境主管部门申请办理理	不境保护设施运行许可证,定	期做好运	运行记录	2
		竟风险预防措施和 竟突发事件应急预 案	企业制定环境风险预防措施和环境突发事件应急预案				25
	' 1	竟保护专职人员培 计划和培训记录	企业对环境保护专职人员进行环保培训,做好培训记录				8
	厂区绿化带建设 做好厂区的绿化					纳入工程 款	

小计	70
总计	160

8.5 项目环境可行性分析

8.5.1 产业政策符合性分析

8.5.1.1 《当前部分行业制止低水平重复建设目录》

根据《当前部分行业制止低水平重复建设目录》,该项目不属于其中"四、 石油和化工行业"中的禁止类及限制类项目。

8.5.1.2 《产业结构调整指导目录(2019年本)》

根据《产业结构调整指导目录(2019年本)》,项目不属于其中的鼓励类、限制类和淘汰类中,属于允许类。符合《产业结构调整指导目录(2019年本)》相关要求。

项目已取得湖北省固定资产投资项目备案证,等级备案项目编码 2103-421002-04-01-132577。根据该备案证认定,该项目符合法律、法规及其他 有关规定,符合国家产业政策、投资政策的规定,符合行业准入标准,不属于 政府核准或审批而进行备案的项目。

8.5.1.3 《限制用地项目目录》及《禁止用地项目目录》

该项目建设内容均不在《限制用地项目目录(2012 年本)》及《禁止用地项目目录(2012 年本)》之列。

8.5.1.4 《部分工业行业淘汰落后生产工艺装备和产品指导目录(2010年本)》

该项目主要产品种类、生产规模、生产工艺、生产设备均不属于《部分工业行业淘汰落后生产工艺装备和产品指导目录(2010年本)》中的"三、化工"部分相关内容。

8.5.1.5 《国务院关于进一步加强淘汰落后产能工作的通知》

根据《国务院关于进一步加强淘汰落后产能工作的通知》相关要求: "以电力、煤炭、钢铁、水泥、有色金属、焦炭、造纸、制革、印染等行业为重点,按照《国务院关于发布实施<促进产业结构调整暂行规定〉的决定》(国发〔2005〕40号)、《国务院关于印发节能减排综合性工作方案的通知》(国发〔2007〕15号)、《国务院批转发展改革委等部门关于抑制部分行业产能过剩和重复建设引导产业健康发展若干意见的通知》(国发〔2009〕38号)、《产业结构调

整指导目录》以及国务院制订的钢铁、有色金属、轻工、纺织等产业调整和振兴规划等文件规定的淘汰落后产能的范围和要求,按期淘汰落后产能。各地区可根据当地产业发展实际,制定范围更宽、标准更高的淘汰落后产能目标任务。"

该项目属于化工项目,不属于《国务院关于进一步加强淘汰落后产能工作的通知》中的重点淘汰行业。

8.5.2 项目总体布局与区内功能分区的合理性分析

本项目选址在荆州市荆州市沙市化工园区内,项目周边已形成较为完善的基础设施,同时实现了"六通一平",即项目用地两电(电力、电讯)、三水(给水、雨水、污水)、一通(道路),满足本项目的建设需要。综上所述,项目的平面布置基本合理。

8.5.3 与园区环境保护工作符合性分析

8.5.3.1 与《关于加强化工园区环境保护工作的意见》符合性分析

根据环境保护部文件环发[2012]54 号《关于加强化工园区环境保护工作的意见》: (四)规范入园项目技术要求。园区入园项目必须符合国家产业结构调整的要求,采用清洁生产技术及先进的技术装备,同时,对特征化学污染物采取有效的治理措施,确保稳定达标排放。

该项目符合国家产业结构调整的要求,采用清洁生产技术及先进的技术装备,对"三废"污染物均采取有效的治理措施,在满足本次评价提出的各项环境保护措施的前提之下项目营运期能够确保稳定达标排放。

综上所述,项目建设符合环境保护部文件《关于加强化工园区环境保护工作的意见》(环发[2012]54号)的相关要求。

8.5.3.2 与园区规划相容性分析

根据《荆州市沙市化工园区控制性详细规划》,湖北江瀚新材料股份有限公司为化工园区的重点企业,其规划的发展重点为"以江汉精细化工为龙头,发展以硅烷产品为主的高附加值、高技术含量、低能耗、低排放的产品,围绕有机硅单体合成,建设有机硅从三氯氢硅到终端产品完整产业链。开发有机硅高端品种,如高温胶、室温胶、硅树脂、硅油及硅烷偶联剂等产品。布局相关的生物医药产业。优化资源配置,确立优势地位,建设副产物综合利用装置。"

因此本项目的建设符合《荆州市沙市化工园区控制性详细规划》的发展方向。

8.5.3.3 与园区规划环评符合性分析

根据《荆州市沙市化工园区控制性详细规划环境影响报告书》中环境准入 负面清单内容"包括电镀行业在内的非精细化工产业、列入产业结构调整指导 目录、外商投资产业指导目录中限制精细化工项目、列入限制用地项目目录 (2012 年本)中精细化工类项目、产业结构调整暂行规定中明确限制的项目"。 本项目属于精细化工产业,未列入产业结构调整指导目录、外商投资产业指导 目录中限制精细化工项目,未列入列入限制用地项目目录(2012 年本)中精细 化工类项目、产业结构调整暂行规定中明确限制的项目。因此本项目的建设符 合《荆州市沙市化工园区控制性详细规划环境影响报告书》的要求。

8.5.3.4 与园区规划环评批复符合性分析

根据荆州生态环境局《关于荆州市沙市化工园区控制性详细规划环境影响报告书的审查意见》(荆环审文〔2019〕5号)相关要求:"各类入园项目应严格遵循园区规划要求并提出环境准入门槛,鼓励发展污染负荷低、技术含量高、资源节约、有利于园区主导产业链延伸的项目。对违反国家产业政策及不符合园区准入条件,特别是污染严重、工艺落后、清洁生产水平低、环境风险大的项目不得入园。"该项目建设性质符合园区产业定位,符合园区项目准入条件,符合国家产业政策,属于有利于园区主导产业链延伸的项目。可见本项目符合荆州生态环境局《关于荆州市沙市化工园区控制性详细规划环境影响报告书的审查意见》(荆环审文〔2019〕5号)要求。

8.5.4 与《中华人民共和国长江保护法》的相符性分析

根据 2020 年 12 月 26 日中华人民共和国第十三届全国人民代表大会常务委员会第二十四次会议通过,自 2021 年 3 月 1 日起施行《中华人民共和国长江保护法》。该法规中第二十六条规定"禁止在长江干支流岸线一公里范围内新建、扩建化工园区和化工项目。"

本项目位于湖北荆州市沙市化工园区,项目选址离长江干支流岸线远大于1 公里,本项目的建设符合《中华人民共和国长江保护法》的要求。

8.5.5 与《省推动长江经济带发展领导小组办公室关于做好湖北长江经济带沿江 重化工及造纸行业专项集中整治后续有关工作的通知》的相符性分析

根据湖北省推动长江经济带发展领导小组办公室文件第 10 号《省推动长江经济带发展领导小组办公室关于做好湖北长江经济带沿江重化工及造纸行业专项集中整治后续有关工作的通知》(2017 年 1 月 4 日),该文件针对《省委办公厅、省政府办公厅关于迅速开展湖北长江经济带沿江重化工及造纸行业企业专项集中整治行动的通知》(鄂办文[2016]34 号)的执行情况和存在的突出问题,为了进一步做好湖北长江经济带沿江重化工及造纸行业企业专项集中整治后续有关工作,巩固现有的整治成果,持续深入推进湖北长江经济带生态保护和绿色发展,经报省政府同意,作出了后续工作通知。该文件"二、进一步加强政策指导和支持中,关于后续建设项目的要求如下:严格按照鄂办文[2016]34号文件要求,对涉及文件内产业布局重点控制范围的园区和企业,坚持"从严控制,适度发展"的原则,分类分情况处理,沿江1公里以内禁止新布局,沿江1公里以外从严控制,适度发展。……(2)超过1公里的项目。新建和改扩建必须在园区内,按程序批复后准予实施。"

本项目位于湖北荆州市沙市化工园区,项目选址离长江距离远大于1公里,须按程序批复后才能实施。因此,本项目符合《省推动长江经济带发展领导小组办公室关于做好湖北长江经济带沿江重化工及造纸行业专项集中整治后续有关工作的通知》要求。

8.5.6 与湖北省推动长江经济带发展领导小组办公室《关于印发湖北省长江经济带化工污染专项整治工作方案的通知》(第 17 号)的相符性分析

对照湖北省推动长江经济带发展领导小组办公室第 17 号文《关于印发湖北省长江经济带化工污染专项整治工作方案的通知》(2018 年 1 月 4 日),分析如下:

- (1) "(六)推动化工企业搬迁入园。……距离长江干流、重要支流岸线1公里范围内的化工企业或者搬离、进入合规园区"。本项目位于湖北荆州市沙市化工园区内,项目选址离长江距离大于1公里,符合方案要求。
- (2) "(七)开展化工建设项目进行专项清理。严格执行负面清单,报入 园化工项目需符合产业政策和行业规范(准入)条件要求。根据产业结构调整指导

目录、外商投资产业指导目录,支持符合园区产业导向的鼓励类项目进入园区,禁止新增限制类项目产能(搬迁改造升级项目除外)。严禁在化工园区外新建化工项目,正在审批的,依法停止审批;已批复未开工的,依法停止建设。"

根据《产业结构调整指导目录(2019年本)》,本项目为鼓励类,且位于湖北荆州市沙市化工园区内,符合方案要求。

8.5.7 项目与推动长江经济带发展领导小组办公室《关于发布长江经济带发展负面清单指南(试行)的通知》(第 89 号)的相符性分析

本扩建项目与《关于发布长江经济带发展负面清单指南(试行)的通知》 (第 89 号)文件的对应情况说明见表 8-6。

表 8-4 本项目与第 89 号文件的相符性对应表

序			是否符
号	指南要求	本项目情况	合指南
	* * * * * *		要求
1	禁止建设不符合全国和省级港口布局规划以及港口总体规划的码头项目,禁止建设不符合《长江干线过江通道布局规划》的过长江通道项目	本项目不属于码头项目和过长 江通道项目	是
2	禁止在自然保护区核心区、绶冲区的岸线和河段范围内投资建设旅游和生产经营项目。禁止在风景名胜区核心景区的岸线和河段范围内投资建设与风景名胜资源保护无关的项目	本项目不在自然保护区核心区、 绶冲区的岸线和河段范围内,也 不在风景名胜区核心景区的岸 线和河段范围内	是
3	禁止在饮用水水源一级保护区的岸线和河段范围内新建、改建、扩建与供水设施和保护水源无关的项目,以及网箱养殖、旅游等可能污染饮用水水体的投资建设项目。禁止在饮用水水源二级保,护区的岸线和河段范围内新建、改建、扩建排放污染物的投资建设项目	本项目不在饮用水水源一级保护区的岸线和河段范围内,也不在饮用水水源二级保,护区的岸线和河段范围内	是
4	禁止在水产种质资源保护区的岸线和河段范围内新建排污口,以及围湖造田、围海造地或围填海等投资建设项目。禁止在国家湿地公园的岸线和河段范围内挖沙、采矿,以及任何不符合主体功能定位的投资建设项目	本项目不在水产种质资源保护 区的岸线和河段范围内,也不在 国家湿地公园的岸线和河段范 围内	是
5	禁止在《长江岸线保护和开发利用总体规划》划定的岸线保护区内投资建设除保障防洪安全、河势稳定、供水安全以及保护生态环境、已建重要枢纽工程以外的项目,禁止在岸线保留区内投资建设除保障防洪安全、河势稳定、供水安全、航道稳定以及保护生态环境以外的项目。禁止在	本项目不在《长江岸线保护和开发利用总体规划》划定的岸线保护区内,也不在《全国重要江河湖泊水功能区划》划定的河段保护区、保留区内	是

	《全国重要江河湖泊水功能区划》划定的河段保护区、保留区内投资建设不利于水资源及自然生态保护的项目		
6	禁止在生态保护红线和永久基本农田范 围内投资建设除国家重大战略资源勘查 项目、生态保护修复和环境治理项目、重 大基础设施项目、军事国防项目以及农牧 民基本生产生活等必要的民生项目以外 的项目	本项目不在生态保护红线和永 久基本农田范围内	是
7	禁止在长江干支流1公里范围内新建、扩建化工园区和化工项目。禁止在合规园区外新建、扩建钢铁、石化、化工、焦化、建材、有色等高污染项目	本项目属于化工项目,位于湖北 荆州市沙市化工园区内,拟建装 置边界距离长江最近距离约 9.5km,处于长江1公里以外, 不属于禁止新建、扩建类项目。	是
8	禁止新建、扩建不符合国家石化、现代煤 化工等产业布局现划的项目	本项目不属于石化、现代煤化工 项目	是
9	禁止新建、扩建法律法规和相关政策明令 类止的落后产能项目	本项目不属于法律法规和相关 政策明令类止的落后产能项目	是
10	禁止新建、扩建不符合国家产能置换要求的严重过剩产能行业的项目	本项目不属于不符合国家产能 置换要求的严重过剩产能行业 的项目	是

8.5.8 项目建设与"生态保护红线、环境质量底线、资源利用上线和环境准入负面清单"要求的符合性

《"十三五"环境影响评价改革实施方案》(环环评(2016)95号)中提出的指导思想为: "以改善环境质量为核心,以全面提高环评有效性为主线,以创新体制机制为动力,以'生态保护红线、环境质量底线、资源利用上线和环境准入负面清单'(以下简称'三线一单')为手段,强化空间、总量、准入环境管理,划框子、定规则、查落实、强基础,不断改进和完善依法、科学、公开、廉洁、高效的环评管理体系。"

《关于以改善环境质量为核心加强环境影响评价管理的通知》(环环评(2016)150号)明确提出: "为适应以改善环境质量为核心的环境管理要求,切实加强环境影响评价(以下简称环评)管理,落实'生态保护红线、环境质量底线、资源利用上线和环境准入负面清单'(以下简称'三线一单')约束,建立项目环评审批与规划环评、现有项目环境管理、区域环境质量联动机制(以下简称'三挂钩'机制),更好地发挥环评制度从源头防范环境污染和生态破坏的作用,加快推进改善环境质量,现就有关事项通知如下:一、强化'三线一单'约束作用"。

根据上述文件精神,现就本项目与"三线一单"相关要求进行分析。

8.5.8.1 生态保护红线

本项目位于湖北湖北荆州市沙市化工园区内,经查阅《省人民政府关于发布湖北省生态保护红线的通知 鄂政发〔2018〕30号),本项目选址地未被划入生态保护红线范围。

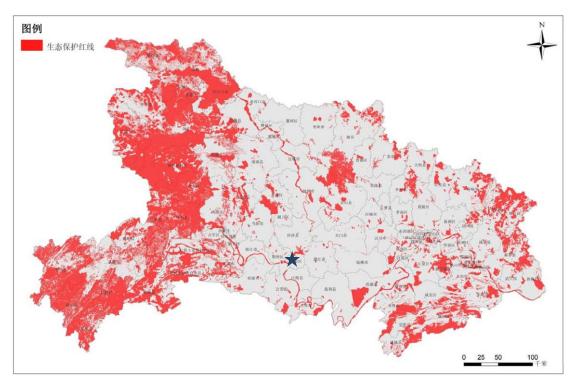


图 8-5 湖北省生态保护红线划定方案示意图

8.5.8.2 环境质量底线

项目选址地区域环境质量目标及其现状达标情况列入表 8-6。

环境质量达 环境要素 环境质量目标 环境质量现状 标情况 大气 GB 3095-2012/二类 GB 3095-2012/二类 不达标 地表水 GB 3838-2002/III类 GB 3838-2002/III类 达标 声 GB 3096-2008/3 类 GB 3096-2008/3 类 达标 (GB/T 14848-2017) /III类 (GB/T 14848-2017) /III类 达标 地下水 (GB36600-2018)/第二类用 (GB36600-2018)/第二类用 土壌 达标

表 8-5 项目选址地区域环境质量目标及其现状达标情况一览表

项目所在区域大气环境为不达标区,为改善全市环境空气质量,荆州市人 民政府依据国务院发布的《大气污染防治行动计划》(国发〔2013〕37号)、 《国务院关于印发打赢蓝天保卫战三年行动计划的通知》(国发〔2018〕22号)、 《省人民政府关于印发湖北省打赢蓝天保卫战行动计划(2018-2020年)的通知》 (鄂政发〔2018〕44号)等文件相关要求,先后制定并陆续颁发实施《荆州市 大气污染防治行动计划》、《荆州市城市环境空气质量达标规划(2013-2022年)》、 《荆州市大气污染防治"十三五"行动计划(2016-2020年)》等文件。随着以 上各项政策的逐步落实,荆州市沙市区大气污染将逐步得到改善。

根据本评价环境影响预测章节内容,本项目在正常工况、各项环保措施正常运行时,本项目对各环境要素的影响较小,不会改变各环境要素的环境质量现状级别/类别。

可见本项目符合环境质量底线相关要求。

8.5.8.3 资源利用上线

本项目所需热量主要来自园区蒸汽,属于清洁能源,使用的生产原料来自 周边的化工企业,易得到;本项目生产废水纳入园区污水处理站处理。

可见本项目符合资源利用上线相关要求。

8.5.8.4 环境准入负面清单

本扩建项目位于湖北荆州市沙市化工园区内,经查阅《荆州市沙市化工园区总体规划(2013-2030)》、《荆州市沙市化工园区总体规划(2013-2030)环境影响报告书》、《省环保厅关于荆州市沙市化工园区总体规划(2013-2030)环境影响报告书审查意见》(鄂环函[2015]392号),本项目未被列入湖北荆州市沙市化工园区禁止、限制等差别化环境准入条件和要求清单。

8.5.8.5 "三线一单"符合性结论

综上所述,本项目符合《"十三五"环境影响评价改革实施方案》(环环评(2016)95号)及《关于以改善环境质量为核心加强环境影响评价管理的通知》(环环评(2016)150号)中所提出的"三线一单"相关要求。

8.5.9 项目选址与环境保护规划功能符合性分析

8.5.9.1 区域环境现状

(1) 环境空气:根据荆州市环境质量公报,荆州市沙市区 6 项评价指标中 PM_{2.5}、PM₁₀ 不达标。根据评价范围内监测数据,监测各个指标因子的最大值占标率均没有超过 100%,表明评价区域内环境空气质量满足 GB3095-2012《环境

空气质量标准》二级标准及 HJ 2.2 -2018《环境影响评价技术导则 大气环境》 附录 D 其他污染物空气质量浓度参考限值要求。

- (2) 地表水:根据监测数据,长江(荆州城区段)各监测断面各项监测因子的标准指数均小于1,说明其现状水质满足《地表水环境质量标准》(GB3838-2002)III类水域标准的要求。
- (3) 环境噪声:根据监测数据,拟建项目厂界的噪声均能达到《声环境质量标准》(GB3096-2008)中3类标准。
- (4) 地下水:根据监测数据,项目调查范围内的地下水现状监测点各项监测因子均能满足《地下水质量标准》(GB/T14848-2017)Ⅲ类标准要求。
- (5)土壤:根据监测数据,项目调查范围内土壤质量能够满足《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)表1筛选值第二类用地标准限值。

由此可知,厂址所在地环境质量现状较适合项目建设。

8.5.9.2 工程对环境敏感点的影响分析

项目对各污染源采取了相应的污染防治措施,通过污染防治措施进行治理后,排放的各类污染物可以满足相应的污染物排放标准要求及污染物总量控制要求,污染防治措施具有一定的环境可行性。

根据环境影响预测评价,正常工况下本工程对环境敏感点及环境保护目标的大气污染及噪声影响较小,不会影响环境敏感点的环境功能要求;综合废水经处理进入荆州申联环境科技有限公司污水处理厂处理达标后排入长江。

8.5.10 厂区总图布局合理性分析

项目在现厂区建设,厂区总体布局紧凑,土地利用率高。整个厂区平面布置采用区块布置方式,功能分工明确,便于物流和公用工程的合理搭配,互不交叉,布局合理。项目可利用现厂区的供水、排水、蒸汽等资源,与厂区已建设施相协调。

8.5.11 项目选址可行性论证小结

综上所述, 拟建项目符合国家产业政策, 项目选址位于荆州市沙市区经济 技术开发区, 符合园区规划, 符合土地利用功能、区域空气环境功能区划、水 环境功能区划以及建设项目环境管理的要求。拟建场地地形平坦,地质条件较好;该区域内有较完善的供水、供电设施,交通运输方便,适合工程的建设。项目具有可行性。

9 环境影响经济损益分析

环境经济损益分析是环境影响评价的一项重要工作内容,其主要任务是衡量建设项目需要投入的环保投资和所能取得的环境保护效果,因此,在环境经济损益分析中,需计算用于控制污染所需投资和费用,同时还要核算可能收到的环境与经济实效。经济效益可以较直观,而环境效益和社会效益则很难直接用货币计算。本评价环境经济损益分析,采用定性与半定量相结合的方法进行简要的分析。

9.1 经济效益分析

项目的建设在取得直接经济效益的同时,带来了一系列的间接经济效益:

- (1)建设期可为建筑公司提供市场,产生明显的经济效益,并为建筑工人提供就业机会。
 - (2) 项目的建设消耗大量建材、装饰材料,将扩大市场需求。
 - (3) 项目水、电、天然气等公用工程的消耗为当地带来间接经济效益。
 - (4)项目部分配套设备的购买使用,将扩大市场需求,带来间接经济效益。
 - (5) 该项目建成后,将增加地方财政及税收。

9.2 社会效益分析

项目投产后主要会产生以下社会效益:

- ①项目实施贯彻了国家、地方关于大力发展高附加值产品经济精神。
- ②为当地及周边地区居民和下岗职工提供就业机会,缓解就业压力,增加 经济收入,提高当地居民生活水平。
 - ③带动地方经济发展,增加国家财政税收。

综上所述,该项目建设将对地区国民经济和社会发展,特别是对带动区域 经济的发展产生积极的影响。

9.3 环境损益分析

9.3.1 环境设施分析

9.3.1.1 环保设施内容

《建设项目环境保护设计规定》第六十三条指出: "凡属于污染治理和保护环境所需的装置、设备、监测手段和工程设施等均属于环境保护设施"、"凡有环境保护设施的建设项目均应列出环境保护设施的投资概算"。

项目建成后,为了有效控制项目实施后对周围环境可能造成的影响,实现 污染物总量控制的环境保护目标,应有一定的环保投资用于污染源的治理,并 在项目的初步设计阶段得到落实,以保证环保设施和主体工程做到"三同时"。

本项目总投资总计为 25000 万元, 其中环保设施投入约为 160 万元, 占工程建设投资 0.64%。

9.3.1.2 项目环保设施运行费用和环保成本费用估算

污染防治环境保护投资成本,即直接用于污染防治的工程环保投资,包括 环保设施投入、环保设施维护、环保设施运行费用及"三废"处理成本、环保 人员工资等。

(1) 年环保设施投入(施工期环保投入不计)

本项目直接用于"三废"环保设施投资 90 万元,项目环保设施使用年限按 20 年计,不计残值率,则每年计提折旧费用为 4.5 万元。

(2) 环保设施维护

环保设施维护费取环保设施总投资的8.0%,则需维护费用约7.2万元。

- (3) 环保投资运行费用及"三废"处理成本
- ①废气治理等设备的运行成本(主要为电费)预计5万元/a;
- ②固体废物处置费用: 年需要固体废物处置费用为 10 万元/a;
- ③废水处置费用:废水处理设备运行成本费用为 10 万元/a。

(4) 环保人员工资

该项目投产后,本项目环保运行维护管理人员为4人,拟定年人均工资为6.0万元/人/年,则人员工资为24万元/a。

综上所述,上述 4 项污染治理环保投资成本总计 60.7 万元/年。详见表 9-1。 本项目销售利润能够在经济上保证环保投资费用。

编号	项目	金额(万元/年)	备 注
1	环保设施投入	4.5	

表 9-1 本项目环保成本费用估算

2	环保设施维护	7.2	
3	"三废"处理运行成本	25	主要为电费、运行费等
4	环保人员工资	24	
	合 计	60.7	

9.3.2 环境负效益

(1) 施工期环境负效益

本工程的施工期的暂时性环境致损因子及其作用主要包括以下几部分:

施工噪声影响施工人员的正常休息及附近居民的正常生活。

施工扬尘对局地环境空气质量有不利影响。

施工期间的生产、生活废污水的排放对水环境可能产生不利影响。

(2) 运行期环境负效益

本工程运行期尽管采取了一系列行之有效的防治措施,各项污染物做到了 达标排放,但仍不可避免会造成一些环境负效益,主要为下列几方面:

废气排放对周边环境空气质量的不利影响。

厂址周围环境噪声有所增加。

9.3.3 环境保护措施的环境效益

(1) 废气处理系统

工艺废气不直接排放至环境,采取治理措施,使外排废气中污染物的浓度降低至最大限度,不但可大大减缓对周边环境空气的影响,同时也可保障工作人员的身心健康,取得显著的环境效益。

故项目环保设施及日常运行的投入可以有效的减轻环境污染。

(2) 废水处理环境效益

本项目废水经预处理达标后排入园区污水管网,经荆州申联环境科技有限 公司污水处理厂处理达标后排入长江。废水达标排放有利于当地地表水环境保 护,可取得显著的环境效益。

(3) 固废处理系统

本项目产生的危废及一般固废暂存点均分类存储于专用设施内,经过处理 后不排放,具有正面的环境效益。

(4) 噪声防治措施

项目对于高噪声设施采取选型、隔声、减振、安装消声设备等措施,从而保障了公司生产和周围环境的安宁,有利于工作人员的身心健康,保证了企业生产的文明程度。

9.3.4 环境影响损益分析

减少环境污染增益: 若公司未对污染采取有效的控制措施,致使周围环境及居民受到影响,则由于停产整改、交纳排污费、罚款及赔偿居民损失等原因,形成一定的经济损失。采取环保治理措施可以避免这一经济损失,也等于获得了这部分经济收益。

生产增益: 若市场良好,采取有效的污染治理措施使得污染物排放总量得到削减,为今后的增产提供了可能,使经济收益随产量的增加而提高。

如果考虑由于减少污染物排放量而减少对自然生态环境造成的损失、厂区 绿化带来的环境效益、多项资源和能源综合利用收入而减少潜在的环境污染和资源破坏效应等,以及本项目的社会环境效益方面,则本项目的环境收益更大。

9.4 小结

从以上分析来看,该项目环境经济损失主要为环保措施费用和环境质量损失,为一次性或短期环境经济损失,可以通过项目实施产生的经济效益来弥补损失,项目社会、经济正效益均较明显,符合环境效益、社会效益、经济效益同步增长原则。该项目的建设将有利于区域的发展,其产生的环境正效益是主要的、明显的,而其负面效益是轻微的,是可以接受的。

10 环境管理与监测计划

10.1 环境管理要求

10.1.1 施工期环境管理要求

建设方在施工期应安排专人并责成施工监理人员搞好环境监理工作,对噪声、扬尘、水土保持、污水排放等进行监控或定期监测。

应注重环境管理知识宣传教育,强化施工单位环境意识,同时,监督监理 单位将施工合同中规定的各项环保措施作为监理工作的重要内容,监督施工单 位落实施工中应采取的各项环保措施。

严格执行《建筑施工场界环境噪声排放标准》(GB12523-2011)中规定的各种施工阶段的噪声限值,并执行建筑施工噪声申报登记制度,在工程开工 15 天前填写《建筑施工场地噪声管理审批表》,向生态环境部门申报。

同时环保机构还应监督施工单位做好如下工作:

采取临时性的降噪措施,如隔声板、栏等。调整作业时间,强噪声机械夜间(22:00-06:00)应停止施工。施工期每天定期洒水,做好防尘工作。

10.1.2 营运期环境管理要求

本次评价针对该项目特点初步拟定了以下营运期环境管理计划:

- (1) 制定各类环境保护规章制度、规定及技术规程;
- (2)建立完善的环保档案管理制度,包括各类环保文件、环保设施、环保设施检修、运行台账等档案管理:
 - (3) 监督、检查环保"三同时"的执行情况:
- (4)指定计划开停车、非正常工况和事故状态下的污染物处理、处置和排放管理措施,配置能够满足非正常工况和事故状态下的处理、处置污染物的环保设施:
- (5) 定期对各类污染源及环境质量进行监测,保证各类污染源达标排放,环境质量满足标准要求:
- (6)制定"突发性污染事故处理预案",最大限度地减少对环境造成的影响和破坏。

10.2 污染物排放管理要求

10.2.1 污染物排放清单

本项目各污染物排放清单见表 10-1。

表 10-1 污染物排放清单

	单位名称	你 湖北江瀚新材料股份有限公司						
	单位住所	湖北省荆州市沙市区经济技术开发区群力大道 36 号						
公台 县未建河	建设地址	湖北省荆州市	少市区经济技术开发区群力大道:	86号				
单位基本情况	法定代表人	甘书官	联系人	简永强				
	所属行业	C261 基础化学原料制造	联系电话	0716-8377816				
	排放重		COD、NH3-N、VOCs					
建设内容概括	工程建设内容概况	在公司现有厂区外的东北部新征用地 1174	140.3 平方米,新建生产车间 9 栋	,仓库2栋,储罐区3座,装卸				
建以内谷帆拍	工性建议的合物机	栈台1座,以及配套的辅助设施和环保设施。项目建成后可年产气凝胶复合材料2000吨						
	序号	原料名称	单位	消耗量				
	1	正硅酸乙酯	t/a	6950				
	2	二氧化碳 (液体)	t/a	250				
主要原辅材料	3	碱液	t/a	40				
情况	4	盐酸	t/a	35				
	5	玻璃纤维毡	t/a	2200				
	6	乙醇		3700				
	7	高纯水	t/a	4400				
3 污染物控制要 求		污染因子及	污染防治措施					

控:	控制要求		污染治理设		排放形	排污口信	执行的环	境标准		
	沙物种类	汚染因 子	施	运行参数	式及去 向	息	污染物排放标准	环境质量标准	总量指标	
3.1	3.1 废气									
3.1.1	生产车间	HCl、 VOCs	二级冷凝+ 喷淋吸收处 理+20m 排 气筒	净化效率 99.25%	有组织、大气	DA03	《大气污染物综合 排放标准》 (GB16297-1996) 《工业企业挥发性 有机物排放控制标 准》(DB12/ 524-2020)	《环境影响评价 技术导则-大气环 境》(HJ2.2 -2018) 附录 D 表 D.1)	/	
3.1.3	储罐区	VOCs	油气回收系统	净化效率 90%	无组织 排放	/	《挥发性有机物无 组织排放控制标准》 (GB37822 -2019)	《环境影响评价 技术导则-大气环 境》(HJ2.2 -2018) 附录 D 表 D.1)		
3.2	废水									
3.2.1	综合污水	COD、 NH ₃ -N	厂区污水处 理站	处理规模为 3750m³/d	汚水总 排口	DW001	《污水综合排放标准》(GB8978-1996) 表4三级标准及荆州 申联环境科技有限 公司污水处理厂进 水水质标准	《地表水环境质 量标准》 (GB3838-2002) III 类标准	COD 0.292t/a、 氨氮 0.029t/a	
3.3	噪声	噪声	合理总平布置;选购低噪声设备;设备安装时采取减振、隔声措施,加强密封和平衡性;空压机安装于隔离机房内,进排气采取消声措施,机房设吸声顶;加强厂区绿化等措			《工业企业厂界环 境噪声排放标准》 (GB12348-2008)中 3 类标准	《声环境质量标 准》 (GB3096-2008) 中3类标准	/		

3.4	固体废物	治理措施	废物类别代码	产生量 t/a	排放量 t/a		
3.4.1	废矿物油	委托有资质 单位处理	HW08	3.6	0	按《一般工业固体废物贮存、处置场污染 控制标准》(GB18599-2020)做好在厂	
3.4.2	污泥	作为制砖材 料或进入生 活垃圾场进 行填埋处理	一般工业废物	1.4	0	区内的暂存,禁止混入生活垃圾及危险废物,应建立档案制度。应将入场得一般工业固体废物的种类和数量以及 GB18599-2001 要求的资料,详细记录在	
3.4.3	生活垃圾	由环卫部门统一清运	生活垃圾	5.1	0	案,长期保存,供随时查阅。 危险废物按照《国家危险废物名录》(2021 年版),执行 GB18597-2001《危险废物 贮存污染控制标准》及其修改单(环保部 公告 2013 年第 36 号)。危险废物内部转 运应填写《危险废物厂内转运记录表》, 并设有内部转运专用工具及转运路线;废 物转移时应遵守《危险废物转移联单管理 办法》,作好废物的记录登记交接工作。	
4	总量控制要求 排污单位重点水污染	<i> </i>	11七字				
排污单位	重点污染物名称		叫细你 排放量(t/a)	减扫	 ⊧时限	减排量(t/a)	备注
単位 重点	COD		·····292	, ,		/	排入外环境的
字	NH ₃ -N	0	0.029		/	/	量
物排			排污单	位重点大气	污染物排放	总量控制指标	
放总	重点污染物名称	年许可:	非放量(t/a) 减担			减排量(t/a)	备注
量控	SO_2		/		/	/	
制要	NOx		/		/	1	/

求		
5	地下水及土壤	见上文"地下水及土壤污染防控措施"
6	厂区防渗	按照《环境影响评价技术导则地下水环境》(HJ 610-2016)要求对储罐区、生产车间、废水管道进行重点防渗,防渗性能不应低于 6.0m 厚、渗透系数为 1.0×10 ⁻⁷ cm/s 的黏土层的防渗性能;对道路、辅助设施进行一般防渗,防渗性能不应低于 1.5m 厚、渗透系数为 1.0×10 ⁻⁷ cm/s 的黏土层的防渗性能;对厂区道路等其它公用工程区等进行简单防渗,进行一般硬化
7	地下水跟踪监测	共设置 1 个地下水监控点,位于厂区;监测项目: pH、氨氮、硝酸盐、总硬度、铅、镉、铁、锰、溶解性总固体、硫酸盐、总大肠菌群、细菌总数、石油类、铜、锌等。并记录井深、水位、水温。丰、枯水期分别监测一次。
8	风险防范措施	①强化风险意识、加强安全管理②危废设置专门的暂存场所,针对危废类别选用合适的包装材料,危废暂存前需检查包装材料的完整性,严禁将危废暂存于破损的包装材料内,以免液体、气体物料等泄露污染周围环境,同时对危废暂存区域进行定期检查,以便及时发现泄露事故并进行处理。③生产过程生产和安全管理中要密切注意事故易发部位,必须要做好运行监督检查与维修保养,防祸于未然。必须组织专门人员每天每班多次进行周期性巡回检查,发现异常现象的应及时检修,必要时按照"生产服从安全"原则停车检修,严禁带病或不正常运转。为操作工人提供服装、防尘口罩、安全帽、安全鞋、防护手套、耳塞、护目镜等防护用品;④保证废气处理设施的正常稳定运行,对场地初期雨水进行有效收集。如发现人为原因不开启废气治理设施,责任人应受行政和经济处罚,并承担事故排放责任及相应的法律责任。若末端治理措施因故不能运行,则相关生产工段生产必须停止。为确保处理效率,在车间设备检修期间,末端处理系统也应同时进行检修,日常应有专人负责进行维护;⑤需按照相关规范要求编制《企业突发环境事件应急预案》,按要求落实并进行备案。

10.2.2 主要污染物总量指标

根据《建设项目主要污染物排放总量指标审核及管理暂行办法》(环发 [2014]197号)中规定:严格落实污染物排放总量控制制度,把主要污染物排放 总量指标作为建设项目环境影响评价审批的前置条件,排放主要污染物的建设项目,在环境影响评价文件审批前,须取得主要污染物排放总量指标。

10.2.2.1 总量控制因子

目前,国家实施污染物排放总量控制的指标共有5项,分别为大气污染物指标(3个):SO₂、NOx、VOCs:废水污染物指标(2个):COD、NH₃-N。

按照《"十二五"主要污染物总量控制规划编制指南》(环办〔2010〕97号),污染物排放总量控制应遵循"环境危害大的、国家重点控制的主要污染物;环境监测和统计手段能够支持的;能够实施总量控制的"指标筛选原则,并根据项目工程分析的污染物排放特征,确定本工程的大气污染物排放总量控制因子为 VOCs,废水污染物排放总量控制因子为 COD、NH₃-N。

10.2.2.2 总量控制分析

本项目废水主要污染物总量考核按照末端向外环境排放量计算,即按荆州申联环境科技有限公司污水处理厂尾水排放标准浓度核算最终排放量,荆州申联环境科技有限公司污水处理厂尾水排放为 COD 50mg/L、NH₃-N 5mg/L,本项目新增外排废水排放量约为 5842.4m³/a, 计算出拟建项目水污染物总量控制指标分别为 COD 0.292t/a、NH₃-N 0.029t/a。

本项目废气主要污染物控制指标分别为 VOCs 0.846t/a。

10.2.2.3 主要污染物排放总量控制指标来源分析

根据本次评价现有工程回顾及本项目工程分析内容,项目建成后主要污染源总量控制指标统计情况见表 10-2:

类别	COD	NH ₃ -N	SO ₂	NOx	VOCs
公司现有工程排放量	8.621	0.862	0	0	1.766
公司待建工程排放量	1.446	0.145	0	0	1.152
本项目排放量	0.292	0.029	0	0	0.846
同期建设项目排放量	1.319	0.132	0	0	0.284

表 10-2 项目建成后主要污染源总量控制指标统计表

建成后全公司排放量	11.678	1.168	0	0	4.048
公司排污许可证许可排 放量	18.141	1.511	0	0	0
需新增总量指标	0	0	0	0	4.048

由上表可见,本项目建成后全公司 COD 和 NH₃-N 的排放量在公司排污许可证许可排放量的范围之内,无需申请总量指标。

10.2.2.4 主要污染物排放总量控制措施

为满足建设项目需要并确保项目污染物排放量在总量控制指标范围内,建设单位应按"三同时"要求认真落实污染防治措施,确保污染物达标排放并符合总量控制要求。项目的污染治理措施在报告书污染防治章节内容中已经进行了详细的论述,在项目建设过程中和建成投产后的环境管理工作中,企业还必须做到以下几点以保证污染物排放总量达标:

- (1)加强企业环境管理及环境监测,确保各环保设施的正常运行及各污染物达标排放,并落实污染物排放去向的最终处理,避免造成二次环境污染。
 - (2) 建立完善的污染治理设施运行管理档案;
- (3) 采取有效治理和防治措施,控制各类污染源及污染物的排放,确保各类污染源及污染物稳定达标排放;
- (4) 持续推行清洁生产,开展清洁生产审计,将预防和治理污染贯穿于整个过程,把全厂的污染削减目标分解到各主要环节,最大限度减轻或消除该项目对环境造成的负面影响;
- (5) 采用清洁生产工艺技术、先进设备,以降低水耗、物耗,尽量减少生产工艺过程中的产污量。

10.3 环境管理制度

10.3.1 信息公开方案

根据《建设项目环境影响评价信息公开机制方案》(环发〔2015〕162 号)的要求,建设单位应建立信息公开机制。

(1) 公开建设项目开工前的信息

项目报批前,建设单位在建设项目环境影响报告书(表)编制完成后,向 环境保护主管部门报批前,向社会公开环境影响报告书(表)全本。

建设项目开工建设前,建设单位应当向社会公开建设项目开工日期、设计单位、施工单位和环境监理单位、工程基本情况、实际选址选线、拟采取的环境保护措施清单和实施计划、由地方政府或相关部门负贵配套的环境保护措施清单和实施计划等,并确保上述信息在整个施工期内均处于公开状态。

(2) 公开建设项目施工过程中的信息

项目建设过程中,建设单位应当在施工中期向社会公开项目环境保护措施 进展情况、施工期的环境保护措施落实情况、施工期环境监理情况、施工期环境监测结果等。

(3) 公开建设项目建成后的信息

建设项目建成后,建设单位应当向社会公开建设项目环评提出的各项环境 保护设施和措施执行情况、竣工环境保护验收监测和调查结果。对主要因排放 污染物对环境产生影响的建设项目,投入生产或使用后,应当定期向社会特别 是周边社区公开主要污染物排放情况。

10.3.2 排污许可证申请

- (1)新建项目的排污单位应当在投入生产或使用并产生实际排污行为之前申请领取排污许可证。
- (2)排污单位依法按照排污许可证申请与核发技术规范提交排污许可申请,申报排放污染物种类、排放浓度等,测算并申报污染物排放量。
- (3)排污单位在申请排污许可证前,应当将主要申请内容,包括排污单位基本信息、拟申请的许可事项、产排污环节、污染防治设施,通过国家排污许可证管理信息平台或者其他规定途径等便于公众知晓的方式向社会公开。公开时间不得少于5日。对实行排污许可简化管理的排污单位,可不进行申请前信息公开。
- (4)排污单位应当在国家排污许可证管理信息平台上填报并提交排污许可证申请,同时向有核发权限的环境保护主管部门提交通过平台印制的书面申请材料。排污单位对申请材料的真实性、合法性、完整性负法律责任。申请材料应当包括:
- ①排污许可证申请表,主要内容包括:排污单位基本信息,主要生产装置, 废气、废水等产排污环节和污染防治设施,申请的排污口位置和数量、排放方

式、排放去向、排放污染物种类、排放浓度和排放量、执行的排放标准。

- ②有排污单位法定代表人或者实际负责人签字或盖章的承诺书。主要承诺 内容包括:对申请材料真实性、合法性、完整性负法律责任;按排污许可证的 要求控制污染物排放;按照相关标准规范开展自行监测、台账记录;按时提交 执行报告并及时公开有关信息等。
 - ③排污单位按照有关要求进行排污口和监测孔规范化设置的情况说明。
- ④建设项目环境影响评价批复文号,或按照《国务院办公厅关于加强环境 监管执法的通知》(国办发〔2014〕56 号)要求,经地方政府依法处理、整顿 规范并符合要求的相关证明材料。
- ⑤城镇污水集中处理设施还应提供纳污范围、纳污企业名单、管网布置、 最终排放去向等材料。
 - ⑥法律法规规定的其他材料。

对实行排污许可简化管理的排污单位,上述材料可适当简化。

10.3.3 与排污许可证制度衔接要求

根据《关于做好环境影响评价制度与排污许可制衔接相关工作的通知》(环办环评[2017]84号)提出:

依据国家或地方污染物排放标准、环境质量标准和总量控制要求等管理规定,按照污染源源强核算技术指南、环境影响评价要索导则等技术文件,严格核定排放口数量、位置以及每个排放口的污染物种类、允许排放浓度和允许排放量、排放方式、排放去向、自行监测计划等与污染物排放相关的主要内容。

建设项目发生实际排污行为之前,排污单位应当按照国家环境保护相关法律法规以及排污许可证申请与核发技术规范要求申请排污许可证,不得无证排污或不按证排污。排污许可证执行报告、台账记录以及自行监测执行情况等应作为开展建设项目环境影响后评价的重要依据。

10.3.4 排污口规范化管理

根据国家环保总局环发〔1999〕24号文件及湖北省环保局鄂环监〔1999〕 17号文件要求,为进一步强化对污染源的现场监督管理及更好地落实国务院提 出的实施污染物排放总量控制和"一控双达标"的要求,规定一切新建、扩建、 改建和限期治理的排污单位必须在建设污染治理设施的同时建设规范化排污

- 口,并作为落实环境保护"三同时"制度的必要组成部分和项目验收内容之一。 排污口规范化技术要求:
- ①合理确定排污口位置,并按《污染源监测技术规范》设置采样点。按要求填写由国家环境保护总局统一印制的《中华人民共和国规范化排污口标志登记证》并根据登记证的内容建立排污管理档案。
- ②对于污水排污口应设置规范的、便于测量流量、流速的测量、并安装三 角堰、矩形堰、测流槽等测流装置或其它计量装置。
- ③设立排污口标志,厂区各车间废水处理设施排口均应分别统一编号,设立标志牌,标志牌按照 GB15562.1-2-1998-5《环境保护图形标志》的规定统一定点监制,车间排污口和厂区排污口可安装简单的计量和记录装置,以便于污染控制与环境管理。

*·环境保护图形标志·

- ④设置监测系统,在排气筒出口处应设取样监测平台,并按国家规定安装 废气污染物在线监测系统;在废水排放口安装废水污染物在线监测系统。
- ⑤规范化整治排污口有关设施属环境保护设施,企业应将其纳入单位设备管理,并选派责任心强,有专业知识和技能的兼、专职人员对排污口进行管理。
- ⑥固废堆场应设置环境保护图形标志牌,将生活垃圾、工业固废等分开存放,做到防火、防扬散、防渗漏,确保不对周围环境形成二次污染。
- ⑦设立废水、废气、废渣、噪声的排污位置设立标志牌,标志牌符合《环境保护图形标志》(GB15562.1-2-1998-5)规定监制的规格和样式。各排污必须

具备采样和测流条件。

- ⑧标志牌设置位置在排污口(采样口)附近且醒目处,高度为标志牌上端 离地面 2m。排污口附近 1m 范围内有建筑物的,设平面式标志牌,无建筑物设立式标志牌。
- ⑨规范化排污口的有关设置(如图形标志牌、计量装置、监控装置等)属 环保设施,排污单位必须负责日常的维护保养,任何单位和个人不得擅自拆除。
- ⑩建立排污口档案。包括排污单位名称、排污口编号、适用的计量方式、排污口位置、所排污物来源、种类、浓度及计量纪录、排放去向、维护和更新记录。

规范化排污口的有关设置(如图形标志牌、计量装置、监控装置等)属环保设施,排污单位必须负责日常的维护保养,任何单位和个人不得擅自拆除,如需变更的须报环保部门同意并办理变更手续。

10.3.5 ISO 环境管理体系

ISO9000 系列质量体系标准在全球范围内广泛推行,令人耳目一新的管理标准开始成为组织经营战略一体化管理的核心。在环境领域,国标标准化组织意识到有必要促使各类组织放弃传统的事后管理的做法,而采取预防的作法,即建立环境管理体系,采用综合的环境管理手段。

ISO14000 系列环境管理标准即是国际标准化组织顺应国际环境保护的发展,依据国际经济与贸易发展的需要而制定的环境管理体系标准。ISO14001 标准是 ISO14000 系列标准中的主体标准,它要求首先在组织内部建立和保持一个符合要求的环境管理体,通过不断地审核、评价活动,推动这个体系的有效运行。这个体系由环境方针、规划、实施、测量和评价、评审和改进等 17 个因素构成,这些环境因素描述了环境管理体系的建立过程及体系建立后通过有计划地评审和持续改进的循环,以保持组织内部环境管理体系的完善和提高。

ISO14001 有助于提高组织的环境意识和管理水平;有助于推动清洁生产,实现污染预防;有助于组织节能降耗,降低成本;减少污染物排放,降低环境事故风险;保证符合法律、法规要求,避免环境刑事责任;满足顾客要求,提高市场份额;取得绿色通行证,走向国际贸易市场。

为此,公司重视并开展 ISO14000 认证及 ISO14001 审核工作,将其体系纳

入到自身的环境管理体系中,建立并保持 ISO14000 环境管理体系,有效地控制污染,以减轻对区域的环境影响,同时,为公司的可持续发展提供保证。

10.3.6 危险废物管理制度

(1) 危险废物专用场地管理制度

目的: 确保危险废物的合理、规范有效的管理。

根据相关法律法规的要求,生产过程中所排放的危险废物,必须送至危险废物专用储存点。并由专人管理危险废物的入、出库登记台账。

危险废物储存点不得放置其它物品,应配备相关消防器材及危险废物标示。 应保持储存点场地的清洁,危险废物堆放整洁。

- (2) 建立危险废物台账管理制度
- ①建立危险废物台账的依据

《固体法》第五十三条规定"产生危险废物的单位,必须按照国家有关规定制定危险废物管理计划,并向所在地县级以上地方人民政府环境保护行政主管部门申报危险废物的种类、生产量、流向、储存、处置等有关资料。"

②建立台账的意义和目的

建立危险废物台账,如实记载产生危险废物的种类、数量、利用、贮存、 处置、流向等信息,是危险废物管理计划制定的基础性内容,是危险废物申报 登记制度的基础,是生产单位管理危险废物的重要依据。

提高危险废物管理水平以及危险废物申报登记数据的准确性。

③建立危险废物台账的要求

跟踪记录危险废物在生产单位内部运转的整个流程。与生产记录相结合, 建立危险废物台账。

- (3) 发生危险废物事故报告制度
- ①为及时掌握环保事故,加强环境监督管理,特制定本制度。
- ②环保事故分为速报和处理结果报告二类。速报从发现环保事故,一小时以内上报;处理结果报告在事故处理完后立即上报。
- ③速报可通过电话、传真、派人直接报告等形式报告荆州市生态环境局。 处理结果报告采用书面报告。
 - ④速报的内容包括:环保事故发生时间、地点、污染源、主要污染物质、

经济损失数额、人员受害情况等初步情况。

⑤处理结果报告在速报的基础上,报告有关确切数据、事故发生的原因、过程及采取的应急措施、处理事故的措施、过程和结果,事故潜在或间接的危害、社会影响、处理后的遗留问题、参加处理工作的有关部门和工作内容、出具有关危害与损失的证明文件等详细情况。

(4) 危险废物运输管理

- ①运送危险废物由当地环保部门指定专业资质的运输公司,没有专运车辆的应当在危险废物集中处置场所内及时进行消毒和清洁。
- ②公司安环部应与运输单位或个人签订防止车辆运输泄漏、遗撒协议书, 对运输单位和运输车辆进行督促检查。
- ③设专人负责运输车辆的管理,制定责任制度并组织实施,严禁使用不符合条件的车辆运输。
- ④运输车辆不得超量装载。装载工程土石方最高点不得超过槽帮上缘50公分,两侧边缘低于槽帮10-20公分,其它散体物不得超过槽帮上缘。
 - ⑤运输车辆必须按计划的运输线路和时间运输。
- ⑥运输车辆在运输过程中,必须密封、包扎、苫盖,并将车厢槽帮、车轮清洗干净,保证在运输线路中不泄漏、遗撒、带泥上路。下雨、雪后、道路泥泞时,禁止车辆进出污染道路。
 - ⑦违反上述规定的将按照相关制度或依法进行处罚。
 - (5) 环境保护岗位责任制
- ①贯彻执行国家、上级有关部门及公司安全生产、环境保护工作的方针、 法律、法规、政策和制度,负责本单位的安全(环保)监督、管理工作。
- ②组织制定、修订并完善本企业职业安全卫生管理制度和安全技术规程、 各项环境保护制度,编制安全(环保)技术措施计划,并监督检查执行情况。
- ③参加本单位建设项目的安全(环保)"三同时"监督,使其符合职业安全 卫生技术要求。
- ④深入现场对各种直接作业环节进行监督检查,督促并协助解决有关安全问题,纠正违章作业,检查各项安全管理制度的执行情况。遇有危及安全生产的紧急情况,有权令其停止作业,并立即报告有关领导。

⑤负责对环境保护方针、政策、规定和技术知识的宣传教育,检查监督执行情况,搞好环境保护,实现文明生产。

10.3.7 健全其他各项环保制度

结合国家有关环保法律、法规,以及各级环保主管部门的规章制度、管理条例,企业应建立相应的环保管理制度,主要内容包括:

(1) 严格执行"三同时"的管理条例

在项目筹备、实施、施工期,严格执行建设项目环境影响评价的制度,并将继续按照国家法律法规要求,严格执行"三同时",确保污染处理设施能够和生产工艺"同时设计",和项目主体工程"同时施工",做到与项目生产"同时验收运行"。

(2) 建立报告制度

对项目排放的废气、废水等污染物实行排污许可证登记,按照地方环保主管部门的要求执行排污申报登记制度。要定期向当地环保部门报告污染治理设施运行情况,污染物排放情况以及污染事故、污染纠纷等情况。

企业排污发生重大变化、污染治理设施改变或企业改、扩建等都必须向当地环保部门申报,本项目必须按《建设项目环境保护管理条例》、《关于印发环评管理中部分行业建设项目重大变动清单的通知》(环办(2015)52号)等相关文件要求实施。

(3) 严格实行在线监测和坚决做到达标排放

对污染防治措施安装在线监测系统,及时向当地环境保护管理部门报送数据;企业也定期进行监测,确保污染物的稳定达标排放。

(4) 健全污染处理设施管理制度

保证处理设施能够长期、稳定、有效地进行处理运行。净化设施的操作管理与生产经营活动一起纳入日常管理工作的范畴,落实责任人、操作人员、维修人员、运行经费、设备的备品备件和其他原辅材料。制定各级岗位责任制,编制操作规程,建立管理台帐。

(5) 环保奖惩条例

公司应加强宣传教育,提高员工的污染隐患意识和环境风险意识;制定员工参与环保技术培训的计划,提高员工技术素质水平;设立岗位实责制,制定

严格的奖、罚制度。建议公司设置环境保护奖励条例,纳入人员考核体系。对 爱护环保设施、节能降耗、改善环境者实行奖励;对环保观念淡薄、不按环保 管理要求,造成环保设施损坏、环境污染及资源和能源浪费者一律处以重罚。

10.3.8 加强职工教育、培训

加强职工的环境保护知识教育,提高职工环保意识,增加对生产污染危害的认识,明白自身在生产劳动过程中的位置和责任。加强新招人员的上岗培训工作,严格执行培训考核制度,不合格人员决不允许上岗操作。

10.3.9 环保设施管理

公司专职环保设施管理操作人员负责本项目环境保护设施的运行、维护、 保养、检修等,其主要工作任务与职责:

- (1) 环保设备的运行、维护、保养、检修与生产设施同样对待:
- (2)加强环保设施管理,确保污染防治设备完好率达 100%,处理效果达到设计和排放标准要求;
 - (3) 编制设备维护保养检修项目及备品备件计划:
 - (4) 负责环保设施的更新、改造和引进应用最佳实用技术或装备等。

10.4 环境监测计划

10.4.1 污染源监测计划

10.4.1.1 施工期环境监测计划

项目施工过程中施工环境监测可委托有资质环境检测单位,施工期监测内容如表 10-3。

分类	污染物类 别	监测项目	监测频次	监测点位
环境空气	施工扬尘	TSP	每季1次, 每次7天	施工场所、砂石料加工点 200m、施工厂界外 200m 以及 可能受施工影响的敏感点等
环境噪声	施工噪声	等效连续 A 声级	每月1次, 每次2天	施工场界、运输道路主要敏感 点设置噪声监测点
地表水	施工污水	水温、pH、COD、SS、 DO、氨氮	每季1次, 每次3天	与评价范围保持基本一致,但 监测点位可适当缩小

表 10-3 施工期监测项目一览表

ᆅᅮᆉ	污染物下	pH、COD、SS、氨氮、	每季1次,	可能受影响的厂界和渣场周
地下水	渗	亚硝酸盐、挥发酚	每次3天	围地下水设置水质监测点

10.4.1.2 营运期环境监测计划

参照《排污单位自行监测技术指南 石油化学工业》(HJ 947-2018),公司 生产运行期污染源监测计划见表 10-4。

类别	监测对象		监测因子	频次	信息公开
废水	废水总排口		化学需氧量、氨氮、流量	自动监测	- 由建设单
			pH 值、悬浮物、总氮、总磷、 石油类	每月1次	
			废水特征有机物	每半年1次	
雨水	雨水排放口		pH、COD、氨氮、SS、石油		
			类 HCl、VOCs	测 每季度1次	
废气			ner voes	母子/又1/八	
	无组织废气	厂界外四 周	HCl、VOCs	每季度1次	位定期向
噪声	噪声源车间内		设备噪声、降噪效果、厂界 噪声	每季度1次,每次 监测2天	公众公开 跟踪监测 结果
	噪声源车间外				
	厂界				
固废	污水处理站污泥、废矿物		统计固体废物产生量、处理	每月统计1次	
	油、生活垃圾		方式(去向)		
地下水	厂区内、上游、下游各一		pH、高锰酸盐指数、氨氮、	每半年1次	
	个		AS、Fe、硫酸盐		
土壤	厂区内		pH、AS、Fe、铜、锌、镉、 铬等	每5年1次	

表 10-4 项目营运期环境监测计划

上述污染源监测若企业不具备监测条件,可委托有资质的监测单位进行监测,监测结果以报表形式上报当地环境保护主管部门。

10.4.2 监测报告制度

环境管理和监测结果可采用年度报表和文字报告相结合的方式。通常情况下,每次监测完毕,应及时整理数据编写报告,作为企业环境监测档案,并需按上级主管部门的要求,按季、年将分析报告及时上报环保部门。

在发生突发事件情况下,要将事故发生的时间、地点、原因、后果和处理 结果迅速以文字报告形式呈送上级主管部门以及荆州市生态环境局沙市区分 局、荆州市生态环境局。

10.4.3 监测资料的保存与建档

- (1) 应有监测分析原始记录,记录应符合环境监测记录规范要求。
- (2) 及时做好监测资料的分析、反馈、通报与归档。
- (3) 接受环保主管部门的监督和指导。

11 环境影响评价结论

11.1 建设项目建设概况

湖北江瀚新材料股份有限公司前身为荆州市江汉精细化工有限公司,是 1998 年改制组建的民营股份制企业,位于荆州市沙市化工园区内,公司现占地 500 亩,拥有总资产过 15 亿元,职工人数 720 余人,其中硕士 6 人,大专以上 学历的科技人员 220 人,拥有一支由 80 多名高、中级专业技术人员组成的研发 团队,现已开发出十二大系列 100 多个品种的硅烷偶联剂和硅烷交联剂产品,工厂建成多条工艺先进的自动化生产线。

湖北江瀚新材料股份有限公司在公司现有厂区外的东北部新征用地 117440.3 平方米,新建生产车间 9 栋,仓库 2 栋,储罐区 3 座,装卸栈台 1 座, 以及配套的辅助设施和环保设施,同步进行年产 2000 吨气凝胶复合材料产业化 建设项目和年产 2000 吨气凝胶复合材料产业化建设项目。

年产 2000 吨气凝胶复合材料产业化建设项目总投资为 25000 万元,项目建成后可年产气凝胶复合材料 2000 吨。气凝胶复合材料是将纳米气凝胶与无机纤维结合在一起,专用于高温各类工业管道、罐体及其他弧面设备的保温隔热。是客户追求的隔热效果及能耗的理想选择。纳米气凝胶是目前已知的固体中导热系数低的物质。气凝胶毡复合有该纳米材料,是一种柔软、无机环保、易于施工的隔热材料,具有较高的经济附加值。该项目于 2021 年 3 月 10 日取得了《湖北省固定资产投资项目备案证》(登记备案项目代码:2103-421002-04-01-132577)。

11.2 环境质量现状

根据荆州市环境质量公报,荆州市沙市区 6 项评价指标中可吸入颗粒物 (PM₁₀)、细颗粒物 (PM_{2.5}) 2 项不达标。根据评价范围内监测数据,监测各个指标因子的最大值占标率均没有超过 100%,表明评价区域内环境空气质量满足 GB3095-2012《环境空气质量标准》二级标准及 HJ 2.2 -2018《环境影响评价技术导则 大气环境》附录 D 其他污染物空气质量浓度参考限值要求。

由监测结果可知,在长江(荆州城区段)各监测断面各监测因子的单因子

评价指数均小于 1,满足《地表水环境质量标准》(GB3838-2002)中规定的III类水体的标准限度值。

由监测结果可知,拟建项目四向厂界声环境质量现状均符合《声环境质量标准》(GB3096-2008)的3类区限值。

对照《地下水质量标准》(GB/T14848-2017)III类限值,本次调查范围内的监测点位各监测因子均达到III类标准限值。说明项目选址区域地下水水质现状总体较好,地下水水质基本满足《地下水质量标准》(GB/T14848-2017)III类限值。

各监测点位的中监测因子土壤环境质量均能满足《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018)表 1 基本项目第二类用地风险筛选值。总体来说,项目区域土壤环境质量状况良好。

11.3 主要环境影响

(1) 大气环境影响预测分析结论

本次大气环境影响评价工作等级为一级。评价范围为以项目厂址为中心区域, 边长 5km 的矩形区域。本次评价选取 AERMOD 模型进行预测。预测结果表明,正常工况条件下,项目外排各废气污染物对评价区域的影响值均可满足相应评价标准要求,对评价区域大气环境影响较小;非正常工况及事故工况下,项目外排各废气污染物出现超过环境质量标准的情况,因此,生产过程中应严格杜绝各种废气的非正常工况及事故工况排放。

本项目 2#储罐区设置 50m 的环境防护距离,经实地踏勘,防护距离包络线范围之内不存在现有住户及其他大气环境保护目标。本次评价提出今后在该项目卫生防护距离覆盖范围内不应新建居住区、学校、医院等大气环境敏感建筑物。

企业通过采取相应措施和加强管理尽量减少废气无组织排放,同时应配合 当地主管部门做好卫生防护范围内的日常管理工作。通过相应的废气治理措施, 排放的废气对周围环境影响均较小。

(2) 地表水环境影响预测分析结论

本项目废水主要为工艺废水、循环冷却水排污水、喷淋装置区产生的尾气处理废水、车间地面清洗废水、生活废水,本项目所产生的废水将通过废水管

道抽至公司现有厂区,依托公司现有厂区的污水处理站进行处理。综合废水经厂区污水处理站处理后达 GB8978-1996《污水综合排放标准》表 4 三级标准要求和州申联环境科技有限公司污水处理厂管网接管要求排入市政污水管网,经园区污水管网排入荆州申联环境科技有限公司污水处理厂进行深度处理,达标后排入长江(荆州城区段)。废水经污水处理厂处理后排放对周边地表水环境影响小。

(3) 固体废物环境影响预测分析结论

本项目产生的各种固体废物全部得到有效的处理处置,处理率 100%,而且实现了固体废物的无害化、资源化。本评价认为,项目产生的固体废物采取相应处理处置措施,实现了废物的再利用,本项目所产生的各类固体废物对环境的污染影响较小。

(4) 噪声环境影响预测分析结论

通过预测结果统计可以得出,主要噪声设备声源经隔声、减震、消声等措施治理后,污染源强将有不同程度的降低,声源再经过建筑物屏蔽和空气吸收衰减后,声级值有不同程度的减少。预测结果表明:厂界四周各计算点昼、夜噪声贡献值均能满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类标准限值,项目营运期对外界环境噪声的影响相对较小。

(5) 地下水环境影响预测分析结论

根据预测结果,非正常状况下,防渗系统受地质灾害等因素的影响,池体型构筑物出现裂缝,废水沿此裂缝下渗,车间主要反应釜发生泄漏,严要求及时采取相应的应急措施,少量污染物伴随废水下渗地下。此时厂区下伏含水层地下水污染物浓度激增,对比《地下水质量标准》(GB/T14848-2017)Ⅲ类标准限值,污染物在非正常状况发生后不会超标,但需要较长时间恢复至背景水平,因此应尽量避免非正常状况发生。

(6) 土壤环境影响预测分析结论

建设项目运营期,项目占地范围内土壤中特征因子在不同年份均的环境影响预测值满足《土壤环境质量建设用地土壤污染风险管控标准》(GB36600-2018)中第二类用地筛选值要求。

(7) 施工期环境影响预测分析结论

本项目施工期废气污染物会给大气环境造成一定的影响,但随施工期完成后自动消失。施工噪声超标排放,由于距离环境敏感点较远,因而噪声影响较小。废水经过设立临时沉淀池和格栅处理,消毒后排放,对环境影响较小。固废通过当地环卫部门及时清运对环境不会造成影响。在施工过程中,土地平整将会造成一定量的水土流失,应当合理安排施工时间,避免大雨、暴雨期大填大挖的前提下,在严格落实本项目水土保持方案中提出的措施及水管部门的审批意见的前提下,项目施工期水土流失的影响较小,在环境承受能力范围内。该工程施工过程中产生的环境影响较小,且随施工完毕而消失。

11.4 公众意见采纳情况

根据公众参与调查和网上公示的反馈情况,暂无人对本工程的建设持反对态度。大多数公众认为本工程对促进当地社会经济发展有积极作用,同时希望,在进行工程建设的过程中,一定要落实环保措施,对废水的排放加强监控,加强排污工程建设,希望生活质量不受影响。对于公众担忧的环境影响问题,以及提出的减缓环境不利影响的建议,建设单位应按本评价具体的防治措施予以落实。

11.5 环境保护措施及污染物排放情况

11.5.1 废水

项目废水主要为工艺废水、循环冷却水排污水、喷淋装置区产生的尾气处理废水、车间地面清洗废水、生活废水。本项目所产生的废水将通过废水管道抽至公司现有厂区,依托公司现有厂区的污水处理站进行处理,污水处理站处理能力为3750m³/d。污水处理站处理工艺为生产废水→格栅→调节均衡池→中和池→蒸汽加热池→UASB 厌氧反应器→初沉池→预曝池→生物接触氧化→二沉池→达标排放。根据待建项目《湖北江瀚新材料股份有限公司功能性硅烷偶联剂及中间体建设项目环境影响报告书》,公司现有厂区需处理的废水量为671.1m³/d,公司现有厂区污水处理站仍有3078.9m³/d的处理余量,本项目和同期建设项目将新增废水107.4m³/d,公司现有厂区污水处理站完全有能力进行处理。

处理后废水污染物浓度满足 GB8978-1996《污水综合排放标准》表 4 三级

标准要求和园区管网接管要求。公司废水处理达标后经污水管网排入荆州申联 环境科技有限公司污水处理厂集中处理,最终排入长江(荆州城区段)。

11.5.2 废气

项目在水解、基材喷涂、超临界干燥、母液精馏的过程中会产生工艺废气,主要污染物为乙醇(以 VOCs 进行评价)和氯化氢。本项目采用一级中冷+二级深冷,回收低沸物,其乙醇回收效率约为 95%,不凝尾气抽至喷淋塔吸收处理,喷淋处理效率 85%,尾气喷淋吸收处理后,大部分尾气被带入废水,少量尾气在经 20m 的排气筒 3#排放。

本项目新建的储罐区进料采用槽罐车运输罐的气相管道与原料储罐的气相管道相连接,运输罐的液相管道与原料储罐的液相管道相连接,槽罐车的物料通过磁力卸料泵输送至原料储罐。储罐区出料采用原料储罐的气相管道与计量罐的气相管道相连接,原料罐液相管道与计量罐液相管道相连接,储罐内的原料通过磁力输送泵输送至车间计量罐。储罐区进料和出料均采用了密闭内循环的方式,尽可能减少了储罐区大小呼吸废气的无组织排放。

11.5.3 固体废物

本项目产生的固体废弃物包括设备维修废油 S1、污水处理污泥 S2 和生活垃圾 S3。其中设备维修废油 S1 属于 HW08 类危险废物(900-249-08),污水处理污泥 S2 属于一般工业固废。

固体废物通过分类收集分类处置,生活垃圾交由园区环卫部门处置;危险废物废矿物油,厂区内收集暂存后交由有资质单位进行处置;污水处理污泥作为制砖建材或者进入生活垃圾填埋场进行填埋处理。各种固体废物均可得到妥善处置,不对外排放。

11.5.4 噪声

项目对噪声通过采取减振、隔声等措施后,强噪声源可降噪 15~20dB(A),再经距离衰减后四向厂界噪声均达到贡献值均满足《声环境质量标准》(GB3096-2008)中的3类声环境功能区标准限值。

11.6 环境影响经济损益分析

本项目总投资总计为项目总投资 25000 万元, 其中环保设施投入约为 160

万元,占工程建设投资 0.64%。该项目环境经济损失主要为环保措施费用和环境质量损失,为一次性或短期环境经济损失,可以通过项目实施产生的经济效益来弥补损失,项目社会、经济正效益均较明显,符合环境效益、社会效益、经济效益同步增长原则。该项目的建设将有利于区域的发展,其产生的环境正效益是主要的、明显的,而其负面效益是轻微的,是可以接受的。

11.7 环境管理与监测计划

为有效保护环境和防止污染事故的发生,公司设有专职环境保护的管理机构和专职环境管理人员。主要负责项目施工期和运行期环境保护方面的检测、日常监督、突发性环境污染事故的处理,以及协调和解决与环保部门和周围公众关系的环境管理工作。

环境监测站负责以全厂环保设施正常运行和厂界污染物监测为主要内容的 监测项目。为切实搞好项目营运期污染物达标排放及总量控制达标,建设方应 制定科学、合理的环境监测计划以监视环保设施的运行。

11.8 环境风险

本项目风险潜势为 I,环境风险评价等级为简单评价,主要环境风险来自泄漏物料挥发,事故期间废水及物料泄漏造成地下水污染,尽管事故概率较小,但要从设计、建设、生产、储运等各方面采取多级防护才能确保安全生产,将上述风险发生的可能性降至最低。本项目应编制环境风险应急预案并在当地环境保护主管部门备案,定期开展风险应急培训和演练。在发生环境风险事故后,按照预案采取有效的污染防控和应急措施,尽量避免发生人员伤亡,最大程度的减缓事故造成不良环境影响。

11.9 清洁生产

通过对该项目原辅材料先进性、生产工艺先进性、技术装备水平先进性和 产品水耗能耗及产污量等各方面的分析,该项目符合清洁生产要求,且有一定 的先进性。从整体上看,该项目清洁生产水平处于国内先进水平。

11.10 主要污染物总量控制

本项目建成后全公司 COD 和 NH3-N 的排放量在公司排污许可证许可排放

量的范围之内, 无需申请总量指标。

11.11 项目环境可行性

该项目采用的生产工艺、生产规模和主要产品均不属于《当前部分行业制止低水平重复建设目录》(发改产业〔2004〕746号)中禁止和限制的内容。

根据《产业结构调整指导目录(2019年本)》,项目不属于其中的鼓励类、限制类和淘汰类中,属于允许类。符合《产业结构调整指导目录(2019年本)》相关要求。

项目已取得湖北省固定资产投资项目备案证,等级备案项目编码 2103-421002-04-01-132577。根据该备案证认定,该项目符合法律、法规及其他 有关规定,符合国家产业政策、投资政策的规定,符合行业准入标准,不属于 政府核准或审批而进行备案的项目。

项目选址地周边不存在自然保护区、风景名胜区、饮用水水源保护区、永久基本农田等环境敏感区;项目选址远离城市建成区。

11.12 环境影响结论

综上所述,湖北江瀚新材料股份有限公司年产 2000 吨气凝胶复合材料产业 化建设项目的建设将促进地区经济的发展。项目建设符合国家现行产业政策, 厂址选择合理,符合荆州市荆州市沙市化工园区总体规划,满足资源综合利用 和清洁生产的要求,项目环保措施合理,项目投产后正常运行时各种污染物均 能满足排放浓度达标、排放速率达标和主要污染物总量控制指标达标的要求, 对周围环境和主要环境保护目标影响较小。项目选址符合当地土地利用规划、 地表水环境功能区划、空气环境功能区划、声环境功能区划以及建设项目环境 管理的要求,环境风险在可承受范围内。从环保角度而言,该项目在拟建地建 设具有环境可行性。